The Nuclear Many-Body Problem - Ring, Peter; Schuck, Peter
Bisher 57,99 €**
53,99 €
versandkostenfrei*

inkl. MwSt.
**Früherer Preis
Sofort lieferbar
27 °P sammeln
    Broschiertes Buch

This long-standing introductory text thoroughly describes nuclear many-body theory, with an emphasis on methodology and the technical aspects of the theories that have been used to describe the nucleus. Now available in a more affordable softcover edition, the original contents of The Nuclear Many-Body Problem presented here is intended for students with basic knowledge of quantum mechanics and some understanding of nuclear phenomena.
From the reviews:"Its scope and complexity are suitable for easy reading by beginning students of nuclear theory. With a crisp and concise style, the authors
…mehr

Produktbeschreibung
This long-standing introductory text thoroughly describes nuclear many-body theory, with an emphasis on methodology and the technical aspects of the theories that have been used to describe the nucleus. Now available in a more affordable softcover edition, the original contents of The Nuclear Many-Body Problem presented here is intended for students with basic knowledge of quantum mechanics and some understanding of nuclear phenomena.

From the reviews:"Its scope and complexity are suitable for easy reading by beginning students of nuclear theory. With a crisp and concise style, the authors quickly develop the shell-model approach to the nuclear many-body problem and subsequently devote more than a third of the text to Hartree-Fock and related models..." Physics Today
  • Produktdetails
  • Texts and Monographs in Physics
  • Verlag: Springer, Berlin
  • Artikelnr. des Verlages: 10783896
  • 3rd pr.
  • Erscheinungstermin: 25. März 2004
  • Deutsch, Englisch
  • Abmessung: 235mm x 155mm x 39mm
  • Gewicht: 1078g
  • ISBN-13: 9783540212065
  • ISBN-10: 354021206X
  • Artikelnr.: 09174481
Autorenporträt
Peter Ring, Technische Universität München, Germany / Peter Schuck, Institut de Physique Nucleaire, Orsay, France
Inhaltsangabe
1 The Liquid Drop Model.- 1.1 Introduction.- 1.2 The Semi-empirical Mass Formula.- 1.3 Deformation Parameters.- 1.4 Surface Oscillations About a Spherical Shape.- 1.5 Rotations and Vibrations for Deformed Shapes.- 1.5.1 The Bohr Hamiltonian.- 1.5.2 The Axially Symmetric Case.- 1.5.3 The Asymmetric Rotor.- 1.6 Nuclear Fission.- 1.7 Stability of Rotating Liquid Drops.- 2 The Shell Model.- 2.1 Introduction and General Considerations.- 2.2 Experimental Evidence for Shell Effects.- 2.3 The Average Potential of the Nucleus.- 2.4 Spin Orbit Coupling.- 2.5 The Shell Model Approach to the Many-Body Problem.- 2.6 Symmetry Properties.- 2.6.1 Translational Symmetry.- 2.6.2 Rotational Symmetry.- 2.6.3 The Isotopic Spin.- 2.7 Comparison with Experiment.- 2.7.1 Experimental Evidence for Single-Particle (Hole) States.- 2.7.2 Electromagnetic Moments and Transitions.- 2.8 Deformed Shell Model.- 2.8.1 Experimental Evidence.- 2.8.2 General Deformed Potential.- 2.8.3 The Anisotropic Harmonic Oscillator.- 2.8.4 Nilsson Hamiltonian.- 2.8.5 Quantum Numbers of the Ground State in Odd Nuclei.- 2.8.6 Calculation of Deformation Energies.- 2.9 Shell Corrections to the Liquid Drop Model and the Strutinski Method.- 2.9.1 Introduction.- 2.9.2 Basic Ideas of the Strutinski Averaging Method.- 2.9.3 Determination of the Average Level Density.- 2.9.4 Strutinski's Shell Correction Energy.- 2.9.5 Shell Corrections and the Hartree-Fock Method.- 2.9.6 Some Applications.- 3 Rotation and Single-Particle Motion.- 3.1 Introduction.- 3.2 General Survey.- 3.2.1 Experimental Observation of High Spin States.- 3.2.2 The Structure of the Yrast Line.- 3.2.3 Phenomenological Classification of the Yrast Band.- 3.2.3 The Backbending Phenomenon.- 3.3 The Particle-plus-Rotor Model.- 3.3.1 The Case of Axial Symmetry.- 3.3.2 Some Applications of the Particle-plus-Rotor Model.- 3.3.3 The triaxial Particle-plus-Rotor Model.- 3.3.4 Electromagnetic Properties.- 3.4 The Cranking Model.- 3.4.1 Semiclassical Derivation of the Cranking Model.- 3.4.2 The Cranking Formula.- 3.4.3 The Rotating Anisotropic Harmonic Oscillator.- 3.4.4 The Rotating Nilsson Scheme.- 3.4.5 The Deformation Energy Surface at High Angular Momenta.- 3.4.6 Rotation about a Symmetry Axis.- 3.4.7 Yrast Traps.- 4 Nuclear Forces.- 4.1 Introduction.- 4.2 The Bare Nucleon-Nucleon Force.- 4.2.1 General Properties of a Two-Body Force.- 4.2.2 The Structure of the Nucleon-Nucleon Interaction.- 4.3 Microscopic Effective Interactions.- 4.3.1 Bruckner's G-Matrix and Bethe Goldstone Equation.- 4.3.2 Effective Interactions between Valence Nucleons.- 4.3.3 Effective Interactions between Particles and Holes.- 4.4 Phenomenological Effective Interactions.- 4.4.1 General Remarks.- 4.4.2 Simple Central Forces.- 4.4.3 The Skyrme Interaction.- 4.4.4 The Gogny Interaction.- 4.4.5 The Migdal Force.- 4.4.6 The Surface-Delta Interaction (SDI).- 4.4.7 Separable Forces and Multipole Expansions.- 4.4.8 Experimentally Determined Effective Interactions.- 4.5 Concluding Remarks.- 5 The Hartree-Fock Method.- 5.1 Introduction.- 5.2 The General Variational Principle.- 5.3 The Derivation of the Hartree-Fock Equation.- 5.3.1 The Choice of the Set of Trial Wave Functions.- 5.3.2 The Hartree-Fock Energy.- 5.3.3 Variation of the Energy.- 5.3.4 The Hartree-Fock Equations in Coordinate Space.- 5.4 The Hartree-Fock Method in a Simple Solvable Model.- 5.5 The Hartree-Fock Method and Symmetries.- 5.6 Hartree-Fock with Density Dependent Forces.- 5.6.1 Approach with Microscopic Effective Interactions.- 5.6.2 Hartree-Fock Calculations with the Skyrme Force.- 5.7 Concluding Remarks.- 6 Pairing Correlations and Superfluid Nuclei.- 6.1 Introduction and Experimental Survey.- 6.2 The Seniority Scheme.- 6.3 The BCS Model.- 6.3.1 The Wave Function.- 6.3.2 The BCS Equations.- 6.3.3 The Special Case of a Pure Pairing Force.- 6.3.4 Bogoliubov Quasi-particles-Excited States and Blocking.- 6.3.5 Discussion of the Gap Equation.- 6.3.6 Schematic Solution of the Gap Equation.- 7
Rezensionen
From the reviews:

"The monography by Peter Ring and Peter Schuck covers the techniques used to solve the nuclear many-body problem ... . is recognized as a reference by the nuclear physics community. Theoretical developments are explained pedagogically, with a constant rigour, are well documented and are illustrated with suitably chosen examples. The book contains a lot of references ... . It is served by a concise style. By its scope and rigour, it has no real rival and will expectedly remain a familiar introductory text in nuclear structure theory for many years." (Joseph Cugnon, Physicalia, Vol. 57 (3), 2005)

"In many ways, the 1950s through to the 1970s may be seen as a golden period for the development of nuclear physics, both experimental and theoretical. ... The book contains an excellent description of many basic theoretical methods, which continue to be relevant today, it is still of value to specialist students of nuclear theory." (J. P. Elliott, Contemporary Physics,Vol. 46 (6), 2005)