-27%
68,95 €
Statt 93,99 €**
68,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*
34 °P sammeln
-27%
68,95 €
Statt 93,99 €**
68,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*

Alle Infos zum eBook verschenken
34 °P sammeln
Als Download kaufen
Statt 93,99 €**
-27%
68,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
34 °P sammeln
Jetzt verschenken
Statt 93,99 €**
-27%
68,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
34 °P sammeln
  • Format: PDF


The Akaike information criterion (AIC) derived as an estimator of the Kullback-Leibler information discrepancy provides a useful tool for evaluating statistical models, and numerous successful applications of the AIC have been reported in various fields of natural sciences, social sciences and engineering. One of the main objectives of this book is to provide comprehensive explanations of the concepts and derivations of the AIC and related criteria, including Schwarz's Bayesian information criterion (BIC), together with a wide range of practical examples of model selection and evaluation…mehr

Produktbeschreibung
The Akaike information criterion (AIC) derived as an estimator of the Kullback-Leibler information discrepancy provides a useful tool for evaluating statistical models, and numerous successful applications of the AIC have been reported in various fields of natural sciences, social sciences and engineering. One of the main objectives of this book is to provide comprehensive explanations of the concepts and derivations of the AIC and related criteria, including Schwarz's Bayesian information criterion (BIC), together with a wide range of practical examples of model selection and evaluation criteria. A secondary objective is to provide a theoretical basis for the analysis and extension of information criteria via a statistical functional approach. A generalized information criterion (GIC) and a bootstrap information criterion are presented, which provide unified tools for modeling and model evaluation for a diverse range of models, including various types of nonlinear models and model estimation procedures such as robust estimation, the maximum penalized likelihood method and a Bayesian approach. TOC:Concept of statistical modeling.- Statistical models.- Information criterion.- Statistical modeling by AIC.- Generalized information criterion GIC.- Statistical modeling by GIC.- Theoretical development and asymptotic properties of the GIC.- Bootstrap information criterion.- Bayesian information criteria.- Various model evaluation criteria.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Erscheinungstermin: 12. September 2007
  • Englisch
  • ISBN-13: 9780387718873
  • Artikelnr.: 37286820
Inhaltsangabe
Concept of statistical modeling.- Statistical models.- Information criterion.- Statistical modeling by AIC.- Generalized information criterion GIC.- Statistical modeling by GIC.- Theoretical development and asymptotic properties of the GIC.- Bootstrap information criterion.- Bayesian information criteria.- Various model evaluation criteria.
Rezensionen
From the Reviews:"I was fully satisfied with it. The authors are obviously well-qualified to write on the subject." (Biometrics Book Reviews, 2008)"This book explains the basic ideas of model evaluation and presents the definition and derivation of the AIC and related criteria, including BIC. ... The book makes a major contribution to the understanding of statistical modeling. Researchers interested in statistical modeling will find a lot of interesting material in it."(Erkki P. Liski, International Statistical Reviews, Vol. 76 (2), 2008)"...Modeling is an important and challenging endeavor that permeates nearly all aspects of applied statistics. The validity of inferences, predictions, and conclusions depends on the propriety of the model serving as their basis. Any book that improves the ability of practicing statisticians and biostatisticians to formulate, select and use models is worth its weight in gold. Konishi and Kitagawa have written such a book." (Journal of the American Statistical Association September 2009, Vol. 104, No. 487, Book Reviews)