-28%
218,99 €
Statt 304,99 €**
218,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
0 °P sammeln
-28%
218,99 €
Statt 304,99 €**
218,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln
Als Download kaufen
Statt 304,99 €**
-28%
218,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Statt 304,99 €**
-28%
218,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln
  • Format: PDF


More energy from the sun strikes Earth in an hour than is consumedby humans in an entire year. Efficiently harnessing solar power forsustainable generation of hydrogen requires low-cost,purpose-built, functional materials combined with inexpensivelarge-scale manufacturing methods. These issues are comprehensivelyaddressed in On Solar Hydrogen & Nanotechnology -an authoritative, interdisciplinary source of fundamental andapplied knowledge in all areas related to solar hydrogen. Writtenby leading experts, the book emphasizes state-of-the-art materialsand characterization techniques as well as…mehr

Produktbeschreibung
More energy from the sun strikes Earth in an hour than is consumedby humans in an entire year. Efficiently harnessing solar power forsustainable generation of hydrogen requires low-cost,purpose-built, functional materials combined with inexpensivelarge-scale manufacturing methods. These issues are comprehensivelyaddressed in On Solar Hydrogen & Nanotechnology -an authoritative, interdisciplinary source of fundamental andapplied knowledge in all areas related to solar hydrogen. Writtenby leading experts, the book emphasizes state-of-the-art materialsand characterization techniques as well as the impact ofnanotechnology on this cutting edge field. * Addresses the current status and prospects of solar hydrogen,including major achievements, performance benchmarks, technologicallimitations, and crucial remaining challenges * Covers the latest advances in fundamental understanding anddevelopment in photocatalytic reactions, semiconductornanostructures and heterostructures, quantum confinement effects,device fabrication, modeling, simulation, and characterizationtechniques as they pertain to solar generation of hydrogen * Assesses and establishes the present and future role of solarhydrogen in the hydrogen economy * Contains numerous graphics to illustrate concepts, techniques,and research results On Solar Hydrogen & Nanotechnology is an essentialreference for materials scientists, physical and inorganicchemists, electrochemists, physicists, and engineers carrying outresearch on solar energy, photocatalysis, or semiconductingnanomaterials, both in academia and industry. It is also aninvaluable resource for graduate students and postdoctoralresearchers as well as business professionals and consultants withan interest in renewable energy.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 720
  • Erscheinungstermin: 30. September 2010
  • Englisch
  • ISBN-13: 9780470823989
  • Artikelnr.: 37299560
Inhaltsangabe
List of Contributors. Preface. Editor Biography. PART ONE
FUNDAMENTALS, MODELING, AND EXPERIMENTAL INVESTIGATION OF PHOTOCATALYTIC REACTIONS FOR DIRECT SOLAR HYDROGEN GENERATION. 1 Solar Hydrogen Production by Photoelectrochemical Water Splitting: The Promise and Challenge (Eric L. Miller). 1.1 Introduction. 1.2 Hydrogen or Hype? 1.3 Solar Pathways to Hydrogen. 1.4 Photoelectrochemical Water
Splitting. 1.5 The Semiconductor/Electrolyte Interface. 1.6 Photoelectrode Implementations. 1.7 The PEC Challenge. 1.8 Facing the Challenge: Current PEC Materials Research. Acknowledgments. References. 2 Modeling and Simulation of Photocatalytic Reactions at TiO2 Surfaces (Hideyuki Kamisaka and Koichi Yamashita). 2.1 Importance of Theoretical Studies on TiO2 Systems. 2.2 Doped TiO2 Systems: Carbon and Niobium Doping. 2.3 Surface Hydroxyl Groups and the Photoinduced Hydrophilicity of TiO2. Conversion. 2.4 Dye
Sensitized Solar Cells. 2.5 Future Directions: Ab Initio Simulations and the Local Excited States on TiO2. Acknowledgments. References. 3 Photocatalytic Reactions on Model Single Crystal TiO2 Surfaces (G.I.N. Waterhouse and H. Idriss). 3.1 TiO2 Single
Crystal Surfaces. 3.2 Photoreactions Over Semiconductor Surfaces. 3.3 Ethanol Reactions Over TiO2(110) Surface. 3.4 Photocatalysis and Structure Sensitivity. 3.5 Hydrogen Production from Ethanol Over Au/TiO2 Catalysts. 3.6 Conclusions. References. 4 Fundamental Reactions on Rutile TiO2(110) Model Photocatalysts Studied by High
Resolution Scanning Tunneling Microscopy (Stefan Wendt, Ronnie T. Vang, and Flemming Besenbacher). 4.1 Introduction. 4.2 Geometric Structure and Defects of the Rutile TiO2 (110) Surface. 4.3 Reactions of Water with Oxygen Vacancies. 4.4 Splitting of Paired H Adatoms and Other Reactions Observed on Partly Water Covered TiO2(110). 4.5 O2 Dissociation and the Role of Ti Interstitials. 4.6 Intermediate Steps of the Reaction Between O2 and H Adatoms and the Role of Coadsorbed Water. 4.7 Bonding of Gold Nanoparticles on TiO2(110) in Different Oxidation States. 4.8 Summary and Outlook. References. PART TWO
ELECTRONIC STRUCTURE, ENERGETICS, AND TRANSPORT DYNAMICS OF PHOTOCATALYST NANOSTRUCTURES. 5 Electronic Structure Study of Nanostructured Transition Metal Oxides Using Soft X
Ray Spectroscopy (Jinghua Guo, Per
Anders Glans, Yi
Sheng Liu, and Chinglin Chang). 5.1 Introduction. 5.2 Soft X
Ray Spectroscopy. 5.3 Experiment Set
Up. 5.4 Results and Discussion. Acknowledgments. References. 6 X
ray and Electron Spectroscopy Studies of Oxide Semiconductors for Photoelectrochemical Hydrogen Production (Clemens Heske, Lothar Weinhardt, and Marcus BEURar). 6.1 Introduction. 6.2 Soft X
Ray and Electron Spectroscopies. 6.3 Electronic Surface
Level Positions of WO3 Thin Films. 6.4 Soft X
Ray Spectroscopy of ZnO:Zn3N2 Thin Films. 6.5 In Situ Soft X
Ray Spectroscopy: A Brief Outlook. 6.6 Summary. Acknowledgments. References. 7 Applications of X
Ray Transient Absorption Spectroscopy in Photocatalysis for Hydrogen Generation (Lin X. Chen). 7.1 Introduction. 7.2 X
Ray Transient Absorption Spectroscopy (XTA). 7.3 Tracking Electronic and Nuclear Configurations in Photoexcited Metalloporphyrins. 7.4 Tracking Metal
Center Oxidation States in the MLCT State of Metal Complexes. 7.5 Tracking Transient Metal Oxidation States During Hydrogen Generation. 7.6 Prospects and Challenges in Future Studies. Acknowledgments. References. 8 Fourier
Transform Infrared and Raman Spectroscopy of Pure and Doped TiO2 Photocatalysts (Lars Osterlund). 8.1 Introduction. 8.2 Vibrational Spectroscopy on TiO2 Photocatalysts: Experimental Considerations. 8.3 Raman Spectroscopy of Pure and Doped TiO2 Nanoparticles. 8.4 Gas
Solid Photocatalytic Reactions Probed by FTIR Spectroscopy. 8.5 Model Gas
Solid Reactions on Pure and Doped TiO2 Nanoparticles Studied by FTIR Spectroscopy. 8.6 Summary and Concluding Remarks. Acknowledgments. References. 9 Interfacial Electron Transfer Reactions in CdS Quantum Dot Sensitized TiO2 Nanocrystalline Electrodes (Yasuhiro Tachibana). 9.1 Introduction. 9.2 Nanomaterials. 9.3 Transient Absorption Spectroscopy. 9.4 Controlling Interfacial Electron Transfer Reactions by Nanomaterial Design. 9.5 Application of QD
Sensitized Metal
Oxide Semiconductors to Solar Hydrogen Production. 9.6 Conclusion. Acknowledgments. References. PART THREE
DEVELOPMENT OF ADVANCED NANOSTRUCTURES FOR EFFICIENT SOLAR HYDROGEN PRODUCTION FROM CLASSICAL .LARGE BANDGAP SEMICONDUCTORS. 10 Ordered Titanium Dioxide Nanotubular Arrays as Photoanodes for Hydrogen Generation (M. Misra and K.S. Raja). 10.1 Introduction. 10.2 Crystal Structure of TiO2. References. 11 Electrodeposition of Nanostructured ZnO Films and Their Photoelectrochemical Properties (Torsten Oekermann). 11.1 Introduction. 11.2 Fundamentals of Electrochemical Deposition. 11.3 Electrodeposition of Metal Oxides and Other Compounds. 11.4 Electrodeposition of Zinc Oxide. 11.5 Electrodeposition of One
and Two
Dimensional ZnO Nanostructures. 11.6 Use of Additives in ZnO Electrodeposition. 11.7 Photoelectrochemical and Photovoltaic Properties. 11.8 Photocatalytic Properties. 11.9 Outlook. References. 12 Nanostructured Thin
Film WO3 Photoanodes for Solar Water and Sea
Water Splitting (Bruce D. Alexander and Jan Augustynski). 12.1 Historical Context. 12.2 Macrocrystalline WO3 Films. 12.3 Limitations of Macroscopic WO3. 12.4 Nanostructured Films. 12.5 Tailoring WO3 Films Through a Modified Chimie Douce Synthetic Route. 12.6 Surface Reactions at Nanocrystalline WO3 Electrodes. 12.7 Conclusions and Outlook. References. 13 Nanostructured a
Fe2O3 in PEC Generation of Hydrogen (Vibha R. Satsangi, Sahab Dass, and Rohit Shrivastav). 13.1 Introduction. 13.2 a
Fe2O3. 13.3 Nanostructured a
Fe2O3 Photoelectrodes. 13.5 Efficiency and Hydrogen Production. 13.6 Concluding Remarks. Acknowledgments. References. PART FOUR
NEW DESIGN AND APPROACHES TO BANDGAP PROFILING AND VISIBLE
LIGHT
ACTIVE NANOSTRUCTURES. 14 Photoelectrocatalyst Discovery Using High
Throughput Methods and Combinatorial Chemistry (Alan Kleiman
Shwarsctein, Peng Zhang, Yongsheng Hu, and Eric W. McFarland). 14.1 Introduction. 14.2 The Use of High
Throughput and Combinatorial Methods for the Discovery and Optimization of Photoelectrocatalyst Material Systems. 14.3 Practical Methods of High
Throughput Synthesis of Photoelectrocatalysts. 14.4 Photocatalyst Screening and Characterization. 14.5 Specific Examples of High
Throughput Methodology Applied to Photoelectrocatalysts. 14.6 Summary and Outlook. References. 15 Multidimensional Nanostructures for Solar Water Splitting: Synthesis, Properties, and Applications (Abraham Wolcott and Jin Z. Zhang). 15.1 Motivation for Developing Metal
Oxide Nanostructures. 15.2 Colloidal Methods for 0D Metal
Oxide Nanoparticle Synthesis. 15.3 1D Metal
Oxide Nanostructures. 15.4 2D Metal
Oxide Nanostructures. 15.5 Conclusion. Acknowledgments. References. 16 Nanoparticle
Assembled Catalysts for Photochemical Water Splitting (Frank E. Osterloh). 16.1 Introduction. 16.2 Two
Component Catalysts. 16.3 CdSe Nanoribbons as a Quantum
Confined Water
Splitting Catalyst. 16.4 Conclusion and Outlook. Acknowledgment. References. 17 Quantum
Confined Visible
Light
Active Metal
Oxide Nanostructures for Direct Solar
to
Hydrogen Generation (Lionel Vayssieres). 17.1 Introduction. 17.2 Design of Advanced Semiconductor Nanostructures by Cost
Effective Technique. 17.3 Quantum Confinement Effects for Photovoltaics and Solar Hydrogen Generation. 17.4 Novel Cost
Effective Visible
Light
Active (Hetero)Nanostructures for Solar Hydrogen Generation. 17.5 Conclusion and Perspectives. References. 18 Effects of Metal
Ion Doping, Removal and Exchange on Photocatalytic Activity of Metal Oxides and Nitrides for Overall Water Splitting (Yasunobu Inoue). 18.1 Introduction. 18.2 Experimental Procedures. 18.3 Effects of Metal Ion Doping. 18.4 Effects of Metal
Ion Removal. 18.5 Effects of Metal
Ion Exchange on Photocatalysis. 18.6 Effects of Zn Addition to Indate and Stannate. 18.7 Conclusions. Acknowledgments. References. 19 Supramolecular Complexes as Photoinitiated Electron Collectors: Applications in Solar Hydrogen Production (Shamindri M. Arachchige and Karen J. Brewer). 19.1 Introduction. 19.2 Supramolecular Complexes for Photoinitiated Electron Collection. 19.3 Conclusions. List of Abbreviations. Acknowledgments. References. PART FIVE
NEW DEVICES FOR SOLAR THERMAL HYDROGEN GENERATION. 20 Novel Monolithic Reactors for Solar Thermochemical Water Splitting (Athanasios G. Konstandopoulos and Souzana Lorentzou). 20.1 Introduction. 20.2 Solar Hydrogen Production. 20.3 HYDROSOL Reactor. 20.4 HYDROSOL Process. 20.5 Conclusions. Acknowledgments. References. 21 Solar Thermal and Efficient Solar Thermal/Electrochemical Photo Hydrogen Generation (Stuart Licht). 21.1 Comparison of Solar Hydrogen Processes. 21.2 STEP (Solar Thermal Electrochemical Photo) Generation of H2. 21.3 STEP Theory. 21.4 STEP Experiment: Efficient Solar Water Splitting. 21.5 NonHybrid Solar Thermal Processes. 21.6 Conclusions. References. Index