-35%
128,95 €
Bisher 196,99 €**
128,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Bisher 196,99 €**
128,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Bisher 196,99 €**
-35%
128,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Bisher 196,99 €**
-35%
128,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
64 °P sammeln

  • Format: PDF


This book brings together research articles by active practitioners and leading researchers reporting recent advances in the field of knowledge discovery. An overview of the field, looking at the issues and challenges involved is followed by coverage of recent trends in data mining. This provides the context for the subsequent chapters on methods and applications. Part I is devoted to the foundations of mining different types of complex data like trees, graphs, links and sequences. A knowledge discovery approach based on problem decomposition is also described. Part II presents important…mehr

Produktbeschreibung
This book brings together research articles by active practitioners and leading researchers reporting recent advances in the field of knowledge discovery. An overview of the field, looking at the issues and challenges involved is followed by coverage of recent trends in data mining. This provides the context for the subsequent chapters on methods and applications. Part I is devoted to the foundations of mining different types of complex data like trees, graphs, links and sequences. A knowledge discovery approach based on problem decomposition is also described. Part II presents important applications of advanced mining techniques to data in unconventional and complex domains, such as life sciences, world-wide web, image databases, cyber security and sensor networks. With a good balance of introductory material on the knowledge discovery process, advanced issues and state-of-the-art tools and techniques, this book will be useful to students at Masters and PhD level in Computer Science, as well as practitioners in the field. TOC:Foundations: Knowledge Discovery and Data Mining.- Automatic Discovery of Class Hierarchies via Output Space.- Graph-based Mining of complex Data.- Predictive Graph Mining with Kernel Methods.- TREEMINER: An Efficient Algorithm for Mining Embedded Ordered Frequent Trees.- Sequence Data Mining.- Link-based Classification.- Applications: Knowledge Discovery from Evolutionary Trees.- Ontology-assisted Mining of RDF Documents.- Image Retrieval using Visual Features and Relevance Feedback.- Significant Feature Selection Using Computational Intelligent Techniques for Intrusion Detection.- On-board Mining of Data Streams in Sensor Networks.- Discovering Evolutionary Classifier over High Speed Non-static Stream.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GB, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Erscheinungstermin: 30.03.2006
  • Englisch
  • ISBN-13: 9781846282843
  • Artikelnr.: 37350478
Autorenporträt
Sanghamitra Bandyopadhyay, Indian Statistical Institute, Calcutta, India / Ujjwal Maulik, University of Kalyani, West Bengal, India / Larry B. Holder, University of Texas at Arlington, Arlington, TX, USA / Diane J. Cook, University of Texas at Arlington, Arlington, TX, USA
Inhaltsangabe
Foundations.- Knowledge Discovery and Data Mining.- Automatic Discovery of Class Hierarchies via Output Space Decomposition.- Graph-based Mining of Complex Data.- Predictive Graph Mining with Kernel Methods.- TreeMiner: An Efficient Algorithm for Mining Embedded Ordered Frequent Trees.- Sequence Data Mining.- Link-based Classification.- Applications.- Knowledge Discovery from Evolutionary Trees.- Ontology-Assisted Mining of RDF Documents.- Image Retrieval using Visual Features and Relevance Feedback.- Significant Feature Selection Using Computational Intelligent Techniques for Intrusion Detection.- On-board Mining of Data Streams in Sensor Networks.- Discovering an Evolutionary Classifier over a High-speed Nonstatic Stream.