134,95 €
134,95 €
inkl. MwSt.
Sofort per Download lieferbar
134,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
134,95 €
inkl. MwSt.
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
134,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
67 °P sammeln

  • Format: PDF


This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The empirical investigations detailed here demonstrate that PNN models evolved by genetic programming and improved by backpropagation are successful when solving real-world tasks. Adaptive Learning of Polynomial Networks is a vital reference…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 15.87MB
Produktbeschreibung
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The empirical investigations detailed here demonstrate that PNN models evolved by genetic programming and improved by backpropagation are successful when solving real-world tasks. Adaptive Learning of Polynomial Networks is a vital reference for researchers and practitioners in the fields of evolutionary computation, artificial neural networks and Bayesian inference, and for advanced-level students of genetic programming. Readers will strengthen their skills in creating efficient model representations and learning operators that efficiently sample the search space, and in navigating the search process through the design of objective fitness functions. TOC:Introduction.- Inductive Genetic Programming.- Tree-like PNN Representations.- Fitness Functions and Fitness Landscapes.- Search Navigation.- Backpropagation Techniques.- Temporal Backpropagation.- Bayesian Inference Techniques.- Statistical Model Diagnostics.- Time Series Modelling.- Conclusions.- References.- Index.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GB, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Erscheinungstermin: 18.08.2006
  • Englisch
  • ISBN-13: 9780387312408
  • Artikelnr.: 37288551
Autorenporträt
Nikolay Nikolaev, Goldsmiths College, London, UK / Hitoshi Iba, University of Tokyo, Japan
Inhaltsangabe
Inductive Genetic Programming.- Tree-Like PNN Representations.- Fitness Functions and Landscapes.- Search Navigation.- Backpropagation Techniques.- Temporal Backpropagation.- Bayesian Inference Techniques.- Statistical Model Diagnostics.- Time Series Modelling.- Conclusions.
Rezensionen
From the reviews:

"This book describes induction of polynomial neural networks from data. ... This book may be used as a textbook for an advanced course on special topics of machine learning." (Jerzy W. Grzymala-Busse, Zentralblatt MATH, Vol. 1119 (21), 2007)