Micromechanics of Solids - Qu, Jianmin; Cherkaoui, Mohammed
131,99 €
versandkostenfrei*


inkl. MwSt.
Versandfertig in 3-5 Tagen
Verlängertes Rückgaberecht bis zum 10.01.2020
Bequeme Ratenzahlung möglich!
ab 6,44 € monatlich
66 °P sammeln

    Gebundenes Buch

The complete primer to micromechanics
Fundamentals of Micromechanics of Solids is the first book integrating various approaches in micromechanics into a unified mathematical framework, complete with coverage of both linear and nonlinear behaviors. Based on this unified framework, results from the authors' own research, as well as existing results in the literature are re-derived in a logical, pedagogical, and understandable approach. It enables readers to follow the various developments of micromechanics theories and quickly understand its wide range of applications of…mehr

Produktbeschreibung
The complete primer to micromechanics

Fundamentals of Micromechanics of Solids is the first book integrating various approaches in micromechanics into a unified mathematical framework, complete with coverage of both linear and nonlinear behaviors. Based on this unified framework, results from the authors' own research, as well as existing results in the literature are re-derived in a logical, pedagogical, and understandable approach. It enables readers to follow the various developments of micromechanics theories and quickly understand its wide range of applications of micromechanics.

This helpful guide is a powerful tool for learning the most fundamental ideas and approaches, basic concepts, principles, and methodologies of micromechanics. Readers will find:

- Vigorous derivations of the mathematical framework

- Introductions to both linear and nonlinear material behavior

- Unique coverage of brittle damage, shape memory alloys, and TRIP steels

- Large numbers of problems and exercises to support teaching and learning the concepts

- Lists of references and suggested readings in each chapter
  • Produktdetails
  • Verlag: Wiley & Sons
  • Seitenzahl: 402
  • Erscheinungstermin: 7. August 2006
  • Englisch
  • Abmessung: 240mm x 161mm x 26mm
  • Gewicht: 680g
  • ISBN-13: 9780471464518
  • ISBN-10: 0471464511
  • Artikelnr.: 20894988
Autorenporträt
Jianmin Qu is a professor in the G. W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology in Atlanta.
Inhaltsangabe
Preface. 1 Introduction. 1.1 Background and Motivation. 1.2 Objectives. 1.3 Organization of Book. 1.4 Notation Conventions. References. 2 Basic Equations of Continuum Mechanics. 2.1 Displacement and Deformation. 2.2 Stresses and Equilibrium. 2.3 Energy, Work, and Thermodynamic Potentials. 2.4 Constitutive Laws. 2.5 Boundary Value Problems for Small
Strain Linear Elasticity. 2.6 Integral Representations of Elasticity Solutions. Problems. Appendix 2.A. Appendix 2.B. Appendix 2.C. References. Suggested Readings. 3 Eigenstrains. 3.1 Definition of Eigenstrains. 3.2 Some Examples of Eigenstrains. 3.3 General Solutions of Eigenstrain Problems. 3.4 Examples. Problems. Appendix 3.A. Appendix 3.B. References. Suggested Readings. 4 Inclusions and Inhomogeneities. 4.1 Definitions of Inclusions and Inhomogeneities. 4.2 Interface Conditions. 4.3 Ellipsoidal Inclusion with Uniform Eigenstrains (Eshelby Solution). 4.4 Ellipsoidal Inhomogeneities. 4.5 Inhomogeneous Inhomogeneities. Problems. Appendix 4.A. Appendix 4.B. Suggested Readings. 5 Definitions of Effective Moduli of Heterogeneous Materials. 5.1 Heterogeneity and Length Scales. 5.2 Representative Volume Element. 5.3 Random Media. 5.4 Macroscopic Averages. 5.5 Hill's Lemma. 5.6 Definitions of Effective Modulus of Heterogeneous Media. 5.7 Concentration Tensors and Effective Properties. Problems. Suggested Readings. 6 Bounds for Effective Moduli. 6.1 Classical Variational Theorems in Linear Elasticity. 6.2 Voigt Upper Bound and Reuss Lower Bound. 6.3 Extensions of Classical Variational Principles. 6.4 Hashin
Shtrikman Bounds. Problems. Appendix 6.A. References. Suggested Readings. 7 Determination of Effective Moduli. 7.1 Basic Ideas of Micromechanics for Effective Properties. 7.2 Eshelby Method. 7.3 Mori
Tanaka Method. 7.4 Self
Consistent Methods for Composite Materials. 7.5 Self
Consistent Methods for Polycrystalline Materials. 7.6 Differential Schemes. 7.7 Comparison of Different Methods. Problems. Suggested Readings. 8 Determination of the Effective Moduli
Multiinclusion Approaches. 8.1 Composite
Sphere Model. 8.2 Three
Phase Model. 8.3 Four
Phase Model. 8.4 Multicoated Inclusion Problem. Problems. Appendix 8.A. Appendix 8.B. Appendix 8.C. References. Suggested Readings. 9 Effective Properties of Fiber
Reinforced Composite Laminates. 9.1 Unidirectional Fiber
Reinforced Composites. 9.2 Effective Properties of Multilayer Composites. 9.3 Effective Properties of a Lamina. 9.4 Effective Properties of a Laminated Composite Plate. Problems. Appendix 9.A. References. Suggested Readings. 10 Brittle Damage and Failure of Engineering Composites. 10.1 Imperfect Interfaces. 10.2 Fiber Bridging. 10.3 Transverse Matrix Cracks. Problems. Appendix 10.A. References. Suggested Readings. 11 Mean Field Theory for Nonlinear Behavior. 11.1 Eshelby's Solution and Kro¿ner's Model. 11.2 Applications. 11.3 Time
Dependent Behavior of Polycrystalline Materials: Secant Approach. Problems. References. 12 Nonlinear Properties of Composites Materials: Thermodynamic Approaches. 12.1 Nonlinear Behavior of Constituents. 12.2 Effective Potentials. 12.3 The Secant Approach. Problems. Suggested Readings. 13 Micromechanics of Martensitic Transformation in Solids. 13.1 Phase Transformation Mechanisms at Different Scales. 13.2 Application: Thermodynamic Forces and Constitutive Equations for Single Crystals. 13.3 Overall Behavior of Polycrystalline Materials with Phase Transformation. Problems. References. Suggested Readings. Index.