Quadratic Irrationals (eBook, PDF) - Halter-Koch, Franz
136,95 €
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
68 °P sammeln
136,95 €
136,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
68 °P sammeln
Als Download kaufen
136,95 €
inkl. MwSt.
Sofort per Download lieferbar
68 °P sammeln
Jetzt verschenken
136,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
68 °P sammeln
  • Format: PDF


Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups.T…mehr

Produktbeschreibung
Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups.T

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Taylor & Francis Ltd.
  • Seitenzahl: 431
  • Erscheinungstermin: 17. Juni 2013
  • Englisch
  • ISBN-13: 9781466591844
  • Artikelnr.: 40068380
Autorenporträt
Franz Halter-Koch retired as a professor of mathematics from the University of Graz in 2004. A member of the Austrian Academy of Science, Dr. Halter-Koch is the author/coauthor of roughly 150 scientific articles, author of Ideal Systems: An Introduction to Multiplicative Ideal Theory, and coauthor of Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory. His research focuses on elementary and algebraic number theory, non-unique factorizations, and abstract multiplicative ideal theory.