Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (eBook, PDF)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
24 °P sammeln
  • Format: PDF


This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 105.53MB
Produktbeschreibung
This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and physics-based ground motion modeling to engineering applications of simulated ground motion for the analysis of seismic response of structures. Further, it includes papers describing current practices for assessing seismic hazard in terms of nuclear safety in low seismicity areas, and proposals for physics-based hazard assessment for critical structures near large earthquakes. The papers validate and verify the models by comparing synthetic results with observed data and empirical models. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Seitenzahl: 338
  • Erscheinungstermin: 20. Dezember 2017
  • Englisch
  • ISBN-13: 9783319727097
  • Artikelnr.: 52943876
Inhaltsangabe
Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations.- Surface Rupture Effects on Earthquake Moment-Area Scaling Relations.- Dynamic Rupture Modelling of the 1999 Düzce, Turkey Earthquake.- Dynamic Rupture Simulations Based on the Characterized Source Model of the 2011 Tohoku Earthquake.- Quantification of Fault-Zone Plasticity Effects with Spontaneous Rupture Simulations.- Synthetic Source Inversion Tests with the Full Complexity of Earthquake Source Processes, Including Both Supershear Rupture and Slip Reactivation.- Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations.- Within-Event and Between-Events Ground Motion Variability from Earthquake Rupture Scenarios.- Azimuthal Dependence of the Ground Motion Variability from Scenario Modeling of the 2014 Mw6.0 South Napa, California, Earthquake Using an Advanced Kinematic Source Model.- Near-Fault Broadband Ground Motion Simulations Using Empirical Green's