126,99
versandkostenfrei*
Preis in Euro, inkl. MwSt.
Sofort lieferbar
Bequeme Ratenzahlung möglich!
ab 6,19 monatlich
63 °P sammeln

    Gebundenes Buch

Based on the author's research and practical projects, he presents a broad view of the needs and problems of the shipping industry in this area. The book covers several models and control types, developing an integrated nonlinear state-space model of the marine propulsion system.

Produktbeschreibung
Based on the author's research and practical projects, he presents a broad view of the needs and problems of the shipping industry in this area. The book covers several models and control types, developing an integrated nonlinear state-space model of the marine propulsion system.
  • Produktdetails
  • Advances in Industrial Control
  • Verlag: Springer, Berlin
  • 2002
  • Seitenzahl: 236
  • Erscheinungstermin: 14. Juni 2002
  • Englisch
  • Abmessung: 235mm x 155mm x 18mm
  • Gewicht: 513g
  • ISBN-13: 9781852335434
  • ISBN-10: 1852335432
  • Artikelnr.: 21888645
Autorenporträt
Nikolaos Xiros, National Technical University of Athens, Greece
Inhaltsangabe
1 Introduction.- 1.1 The Marine Diesel Propulsion System.- 1.1.1 Historical Note.- 1.1.2 Marine Engine Configuration and Operation.- 1.1.3 The Screw Propeller.- 1.2 Contribution of this Work.- 1.2.1 Statement of the Problem.- 1.2.2 Overview of the Approach.- 1.2.3 Text Outline.- 2 Marine Engine Thermodynamies.- 2.1 Physical Engine Modelling.- 2.2 Turbocharged Engine Model Variables.- 2.3 Turbocharged Engine Dynamical Equations.- 2.4 Turbocharged Engine Algebraic Equations.- 2.4.1 Turbocharger Compressor.- 2.4.2 Intercooler.- 2.4.3 Scavenging Receiver.- 2.4.4 Engine Cylinders.- 2.4.5 Exhaust Receiver.- 2.4.6 Turbocharger Turbine.- 2.5 Cycle-mean Model Summary and Solution Procedure.- 2.5.1 Direct-drive Turbocharged Engine Model Summary.- 2.5.2 Engine Simulation Procedure.- 2.5.3 Typical Case Numerical Example.- 2.5.4 Torque Map Generation Procedure.- 2.5.5 Test Case Investigation.- 2.6 Summary.- 3 Marine Plant Empirical Transfer Function.- 3.1 Black-box Engine Modelling.- 3.2 Shafting System Dynamical Analysis.- 3.2.1 Lumped Two-mass Model.- 3.2.2 Typical Case Numerical Investigation.- 3.3 The Plant Transfer Function.- 3.3.1 Black-box Model Development and Identification.- 3.3.2 Full-order Transfer Function.- 3.3.3 Reduced-order Transfer Function.- 3.3.4 Plant Transfer Function Identification.- 3.3.5 Identification of Typical Powerplant.- 3.4 Summary.- 4 Robust PID Control of the Marine Plant.- 4.1 Introduction.- 4.1.1 The PID Control Law.- 4.1.2 Proportional Control.- 4.1.3 Proportional-Integral Control.- 4.1.4 Proportional-Integral-Derivative Control.- 4.2 Application Aspects of Marine Engine Goveming.- 4.2.1 Functionality Requirements.- 4.2.2 Spectral Analysis of Engine and Propeller Torque.- 4.2.3 Example of Propulsion Plant Analysis.- 4.3 PID H-infinity Loop Shaping.- 4.3.1 Theoretical Note.- 4.3.2 PID Controller Tuning for Loop Shaping.- 4.4 PI and PID H-infinity Regulation of Shaft RPM.- 4.4.1 Overview and Requirements.- 4.4.2 The PI H? RPM Regulator.- 4.4.3 The PID H? RPM Regulator.- 4.4.4 Robustness Against Neglected Dynamies.- 4.4.5 Numerical Investigation of a Typical Case.- 4.5 D-term Implementation Using Shaft Torque Feedback.- 4.5.1 Real-time Differentiation and Linear Filters.- 4.5.2 RPM Derivative Estimation from Fuel Index and Shaft Torque.- 4.5.3 The PID H? RPM Regulator with Shaft Torque Feedforward.- 4.5.4 Typical Case Numerical Investigation.- 4.6 Summary.- 5 State-space Description of the Marine Plant.- 5.1 Introduction.- 5.1.1 Overview of the Approach.- 5.1.2 Mathematical Formulation and Notation.- 5.2 The Neural Torque Approximators.- 5.2.1 Configuration of the Approximators.- 5.2.2 Training of the Approximators.- 5.2.3 Typical Case Numerical Investigation.- 5.3 State Equations of the Marine Plant.- 5.4 State-space Decomposition and Uncertainty.- 5.4.1 Manipulation of Equations and Variables.- 5.4.2 State-space Parametrie Uncertainty and Disturbance.- 5.4.3 Uncertainty Identification of Typical Powerplant.- 5.5 Transfer Function Matrix of the Marine Plant.- 5.5.1 The Open-loop Transfer Function Matrix.- 5.5.2 Empirical and State-space Transfer Function.- 5.6 Summary.- 6 Marine Plant Robust State-feedback Control.- 6.1 Introduction.- 6.1.1. Controller Design Framework.- 6.1.2. Control of N2M.- 6.1.3. Control of UPM.- 6.1.4. Architecture of the Propulsion Control System.- 6.2 Supervisory Setpoint Control of the Marine Plant.- 6.2.1 Setpoint Control Requirements.- 6.2.2 Supervisory Controller Structure.- 6.2.3 Test Case Investigation.- 6.2.4 The Low-pass Setpoint Filter.- 6.3 Full-state-feedback Control of the Marine Plant.- 6.3.1 Theoretical Background.- 6.3.2 Practical H?-norm Requirements.- 6.3.3 Marine Plant Regulator Synthesis.- 6.3.4 Test Case: MAN B&W 6L60MC Marine Plant.- 6.3.5 Robustness Against Model Uncertainty.- 6.4 State-feedback and Integral Control of the Marine Plant.- 6.4.1 Steady-state Error Analysis.- 6.4.2 Integral Control and Steady-state Error.- 6.5 Summary.- 7 Closure.- 7.1 Conclu