32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

Nanocrystalline FINEMET-type alloys (FeSiBCuNb ) having average grain diameter ~ 10 nm , obtained by the devitrification of rapidly solidified (typically 20 mm thick ribbons) amorphous alloys are attractive for applications due to their excellent soft magnetic properties e. g. - high saturation magnetic induction comparable with Fe-based amorphous alloys and large permeability as observed in Co-based metallic glasses. In Finemet type alloys the presence of small amount of Cu enhances the nucleation rate, while presence of Nb inhibits the grain growth, resulting in nano-crystallization which…mehr

Produktbeschreibung
Nanocrystalline FINEMET-type alloys (FeSiBCuNb ) having average grain diameter ~ 10 nm , obtained by the devitrification of rapidly solidified (typically 20 mm thick ribbons) amorphous alloys are attractive for applications due to their excellent soft magnetic properties e. g. - high saturation magnetic induction comparable with Fe-based amorphous alloys and large permeability as observed in Co-based metallic glasses. In Finemet type alloys the presence of small amount of Cu enhances the nucleation rate, while presence of Nb inhibits the grain growth, resulting in nano-crystallization which proved to be key factor for obtaining the particular ultra fine grain structure.
Autorenporträt
Dr. Shailendra Singh Khinchi is the Professor In-charge of Applied Physics Department of Institute of Engineering & Technology, Devi Ahilya University Indore (India) . He has over 15 years of academic and research experience.The author is very much found of teaching to undergraduate students of Science & Engineering.