Bisher 29,99 €**
28,99 €
versandkostenfrei*

inkl. MwSt.
**Früherer Preis
Versandfertig in 2-4 Wochen
14 °P sammeln
    Broschiertes Buch

This book gives an undergraduate-level introduction to Number Theory, with the emphasis on fully explained proofs and examples; exercises (with solutions) are integrated into the text. The first few chapters, covering divisibility, prime numbers and modular arithmetic, assume only basic school algebra, and are therefore suitable for first or second year students as an introduction to the methods of pure mathematics. Elementary ideas about groups and rings (summarised in an appendix) are then used to study groups of units, quadratic residues and arithmetic functions with applications to…mehr

Produktbeschreibung
This book gives an undergraduate-level introduction to Number Theory, with the emphasis on fully explained proofs and examples; exercises (with solutions) are integrated into the text. The first few chapters, covering divisibility, prime numbers and modular arithmetic, assume only basic school algebra, and are therefore suitable for first or second year students as an introduction to the methods of pure mathematics. Elementary ideas about groups and rings (summarised in an appendix) are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares; in particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.
  • Produktdetails
  • Springer Undergraduate Mathematics Series
  • Verlag: Springer, Berlin
  • 1st Corrected ed. 1998. Corr. 2nd printing 1998
  • Seitenzahl: 316
  • Erscheinungstermin: 31. Juli 1998
  • Englisch
  • Abmessung: 235mm x 178mm x 17mm
  • Gewicht: 562g
  • ISBN-13: 9783540761976
  • ISBN-10: 3540761977
  • Artikelnr.: 09224762
Inhaltsangabe
1. Divisibility.- 1.1 Divisors.- 1.2 Bezout's identity.- 1.3 Least common multiples.- 1.4 Linear Diophantine equations.- 1.5 Supplementary exercises.- 2. Prime Numbers.- 2.1 Prime numbers and prime-power factorisations.- 2.2 Distribution of primes.- 2.3 Fermat and Mersenne primes.- 2.4 Primality-testing and factorisation.- 2.5 Supplementary exercises.- 3. Congruences.- 3.1 Modular arithmetic.- 3.2 Linear congruences.- 3.3 Simultaneous linear congruences.- 3.4 Simultaneous non-linear congruences.- 3.5 An extension of the Chinese Remainder Theorem.- 3.6 Supplementary exercises.- 4. Congruences with a Prime-power Modulus.- 4.1 The arithmetic of ?p.- 4.2 Pseudoprimes and Carmichael numbers.- 4.3 Solving congruences mod (pe).- 4.4 Supplementary exercises.- 5. Euler's Function.- 5.1 Units.- 5.2 Euler's function.- 5.3 Applications of Euler's function.- 5.4 Supplementary exercises.- 6. The Group of Units.- 6.1 The group Un.- 6.2 Primitive roots.- 6.3 The group Une, where p is an odd prime.- 6.4 The group U2e.- 6.5 The existence of primitive roots.- 6.6 Applications of primitive roots.- 6.7 The algebraic structure of Un.- 6.8 The universal exponent.- 6.9 Supplementary exercises.- 7. Quadratic Residues.- 7.1 Quadratic congruences.- 7.2 The group of quadratic residues.- 7.3 The Legendre symbol.- 7.4 Quadratic reciprocity.- 7.5 Quadratic residues for prime-power moduli.- 7.6 Quadratic residues for arbitrary moduli.- 7.7 Supplementary exercises.- 8. Arithmetic Functions.- 8.1 Definition and examples.- 8.2 Perfect numbers.- 8.3 The Mobius Inversion Formula.- 8.4 An application of the Mobius Inversion Formula.- 8.5 Properties of the Mobius function.- 8.6 The Dirichlet product.- 8.7 Supplementary exercises.- 9. The Riemann Zeta Function.- 9.1 Historical background.- 9.2 Convergence.- 9.3 Applications to prime numbers.- 9.4 Random integers.- 9.5 Evaluating ?(2).- 9.6 Evaluating ?(2k).- 9.7 Dirichlet series.- 9.8 Euler products.- 9.9 Complex variables.- 9.10 Supplementary exercises.- 10. Sums of Squares.- 10.1 Sums of two squares.- 10.2 The Gaussian integers.- 10.3 Sums of three squares.- 10.4 Sums of four squares.- 10.5 Digression on quaternions.- 10.6 Minkowski's Theorem.- 10.7 Supplementary exercises.- 11. Fermat's Last Theorem.- 11.1 The problem.- 11.2 Pythagoras's Theorem.- 11.3 Pythagorean triples.- 11.4 Isosceles triangles and irrationality.- 11.5 The classification of Pythagorean triples.- 11.6 Fermat.- 11.7 The case n = 4.- 11.8 Odd prime exponents.- 11.9 Lame and Kummer.- 11.10 Modern developments.- 11.11 Further reading.- Solutions to Exercises.- Index of symbols.- Index of names.
Rezensionen
From the reviews:

BULLETIN OF MATHEMATICS BOOKS

"?as a nice concluding chapter on Fermat? Last Theorem, with a brief discussion on the coup de grace."

G.A. Jones and J.M. Jones

Elementary Number Theory

"A welcome addition . . . a carefully and well-written book."- THE MATHEMATICAL GAZETTE

" This book would make an excellent text for an undergraduate course on number theory."

-MATHEMATICAL REVIEWS