165,99 €
165,99 €
inkl. MwSt.
Sofort per Download lieferbar
165,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
165,99 €
inkl. MwSt.
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
165,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln

  • Format: PDF


This book prestigiously covers our current understanding of SiC as a semiconductor material in electronics. Its physical properties make it more promising for high-powered devices than silicon. The volume is devoted to the material and covers methods of epitaxial and bulk growth. Identification and characterization of defects is discussed in detail. The contributions help the reader to develop a deeper understanding of defects by combining theoretical and experimental approaches. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a…mehr

Produktbeschreibung
This book prestigiously covers our current understanding of SiC as a semiconductor material in electronics. Its physical properties make it more promising for high-powered devices than silicon. The volume is devoted to the material and covers methods of epitaxial and bulk growth. Identification and characterization of defects is discussed in detail. The contributions help the reader to develop a deeper understanding of defects by combining theoretical and experimental approaches. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles. The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: Wiley-VCH
  • Erscheinungstermin: 08.04.2011
  • Englisch
  • ISBN-13: 9783527629060
  • Artikelnr.: 37352159
Autorenporträt
* Gerhard Pensl works with his group on the growth of SiC single crystals for high power applications, its electrical and optical characterization, and the investigations on multicrystalline Si for solar cells. Mr Pensl is Professor of Physics and Director of the Department of Applied Physics at the Erlangen University. * Lothar Ley is Professor at the University of Erlangen and Head of the Department of Technical Physics. Alongside their experimental research on SiC, his group also works on Diamonds and Carbon Nanotubes. * Dr. Peter Friedrichs is Managing Director at SiCED, a Siemens Company located in Erlangen. SiCED develops technologies for SiC power semiconductors and systems based on these devices. Their research is devoted to device design and simulation as well as the characterization of devices via end of life tests. * Tsunenobu Kimoto, Professor at the Department of Electronic Science and Engineering at Kyoto University, has dedicated his work to growth and characterization of wide bandgap semiconductors and the fabrication process of SiC devices. He is holding a patent on the manufacturing of Lateral Junciton FETs.
Inhaltsangabe
1) Bulk growth of SiC
review on advances of SiC vapor growth for improved doping and systematic study on dislocation evolution 2) Bulk and Epitaxial Growth of Micropipe
free Silicon Carbide on Basal and Rhombohedral Plane Seeds 3) Formation of extended defects in 4H
SiC epitaxial growth and development of fast growth technique 4) Fabrication of High Performance 3C
SiC Vertical MOSFETs by Reducing Planar Defects 5) Identification of intrinsic defects in SiC: Towards an understanding of defect aggregates by combining theoretical and experimental approaches 6) EPR Identification of Intrinsic Defects in 4H
SiC 7) Electrical and Topographical Characterization of Aluminum Implanted Layers in 4H Silicon Carbide 8) Optical properties of as
grown and process
induced stack
ing faults in 4H
SiC 9) Characterization of defects in silicon carbide by Raman spectroscopy 10) Lifetime
killing defects in 4H
SiC epilayers and lifetime control by low
energy electron irradiation 11) Identification and carrier dynamics of the dominant lifetime limiting defect in n
4H
SiC epitaxial layers 12) Optical Beam Induced Current Measurements: principles and applications to SiC device characterisation 13) Measurements of Impact Ionization Coefficients of Electrons and Holes in 4H
SiC and their Application to Device Simulation 14) Analysis of interface trap parameters from double
peak conductance spectra taken on N
implanted 3C
SiC MOS capacitors 15) Non
basal plane SiC surfaces: Anisotropic structures and low
dimensional electron systems 16) Comparative Columnar Porous Etching Studies on n
type 6H SiC Crystalline faces 17) Micro
and Nanomechanical Structures for Silicon Carbide MEMS and NEMS 18) Epitaxial Graphene: an new Material 19) Density Functional Study of Graphene Overlayers on SiC