-22%
111,99 €
Bisher 143,99 €**
111,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Bisher 143,99 €**
111,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Bisher 143,99 €**
-22%
111,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Bisher 143,99 €**
-22%
111,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln

  • Format: PDF


In order to develop excellent photonic devices, we have to fully understand the physics behind operations of photonic devices. This book thoroughly teaches the fundamental physics currently applied to the development of photonics devices such as energy bands of semiconductors, optical transitions, optical waveguides, and semiconductor junctions. The book also reviews the characteristics of laser diodes, optical filters, and optical functional devices, which have been developed based on the above physics. These photonic devices have been demonstrated in system applications, and several experimental results are described.…mehr

Produktbeschreibung
In order to develop excellent photonic devices, we have to fully understand the physics behind operations of photonic devices. This book thoroughly teaches the fundamental physics currently applied to the development of photonics devices such as energy bands of semiconductors, optical transitions, optical waveguides, and semiconductor junctions. The book also reviews the characteristics of laser diodes, optical filters, and optical functional devices, which have been developed based on the above physics. These photonic devices have been demonstrated in system applications, and several experimental results are described.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 400
  • Erscheinungstermin: 02.02.2011
  • Englisch
  • ISBN-13: 9780470769515
  • Artikelnr.: 37299174
Autorenporträt
TAKAHIRO NUMAI, PHD, is Professor at Ritsumeikan University. Previously, at Opto-Electronics Research Laboratories, NEC Corporation, he researched and developed laser diodes for lightwave transmission systems and wavelength tunable optical filters for photonic switching systems. Dr. Numai holds twenty-eight U.S. patents, and he has authored and coauthored more than 150 technical papers and international conference communications on optoelectronics. He has also written many textbooks. Dr. Numai is a member of the Institute of Electronics, Information, and Communication Engineers of Japan; the Japan Society of Applied Physics; and the Physical Society of Japan. He is also a senior member of the Optical Society of America (OSA) and the Institute of Electrical and Electronics Engineers (IEEE).
Inhaltsangabe
PREFACE. PART I PHYSICS REQUIRED TO DESIGN LASER DIODES. 1 Energy Bands in Bulk and Quantum Structures. 1.1 Introduction. 1.2 Bulk Structure. 1.3 Quantum Structures. 1.4 Superlattices. References. 2 Optical Transitions. 2.1 Introduction. 2.2 Direct and Indirect Transitions. 2.3 Light
Emitting Processes. 2.4 Spontaneous Emission, Stimulated Emission, and Absorption. 2.5 Optical Gains. References. 3 Optical Waveguides. 3.1 Introduction. 3.2 Two
Dimensional Optical Waveguides. 3.3 Three
Dimensional Optical Waveguides. References. 4 Optical Resonators. 4.1 Introduction. 4.2 Fabry
Perot Cavity. 4.3 Waveguide Grating. 4.4 Vertical Cavity. References. 5 pn
and pnpn
Junctions. 5.1 Intrinsic Semiconductor. 5.2 Extrinsic Semiconductor. 5.3 pn
Junction. 5.4 pnpn
Junction. References. PART II CONVENTIONAL LASER DIODES. 6 Fabry
Perot Laser Diodes. 6.1 Introduction. 6.2 Rate Equations. 6.3 Current versus Voltage Characteristics. 6.4 Current versus Light Output Characteristics. 6.5 Polarization of Light. 6.6 Transverse Modes. 6.7 Longitudinal Modes. 6.8 Modulation Characteristics. 6.9 Noises. References. 7 Quantum Well Laser Diodes. 7.1 Introduction. 7.2 Features of Quantum Well LDs. 7.3 Strained Quantum Well LDs. References. 8 Single
Mode Laser Diodes. 8.1 Introduction. 8.2 DFB LDs. 8.3 DBR LDs. 8.4 Vertical Cavity Surface
Emitting LDs. References. 9 Semiconductor Optical Amplifiers. 9.1 Introduction. 9.2 Signal Gain. 9.3 Polarization. 9.4 Noises. References. PARTIII ADVANCED LASER DIODES AND RELATED DEVICES. 10 Phase
Controlled DFB Laser Diodes. 10.1 Introduction. 10.2 Theoretical Analysis. 10.3 Device Structure. 10.4 Device Characteristics and Discussion. 10.5 Summary. References. 11 Phase
Shift
Controlled DFB Laser Diodes. 11.1 Introduction. 11.2 Theoretical Analysis. 11.3 Device Structure. 11.4 Device Characteristics and Discussion. 11.5 Summary. References. 12 Phase
Controlled DFB Laser Filter. 12.1 Introduction. 12.2 Device Structure. 12.3 Device Characteristics and Discussion. 12.4 Summary. References. 13 Phase
Shift
Controlled DFB Filter. 13.1 Introduction. 13.2 Theoretical Analysis. 13.3 Device Structure. 13.4 Device Characteristics and Discussion. 13.5 Summary. References. 14 Passive Phase
Shifted DFB Filter. 14.1 Introduction. 14.2 Theoretical Analysis. 14.3 Device Structure. 14.4 Device Characteristics and Discussion. 14.5 Summary. References. 15 Two
Section Fabry
Perot Filter. 15.1 Introduction. 15.2 Theoretical Analysis. 15.3 Device Structure. 15.4 Device Characteristics and Discussion. 15.5 Summary. References. 16 Optical Functional Devices with pnpn
Junctions. 16.1 Introduction. 16.2 Edge
Emitting Optical Functional Device. 16.3 Surface
Emitting Optical Functional Device. References. PARTIV SYSTEM DEMONSTRATIONS USING ADVANCED LASER DIODES AND RELATED DEVICES. 17 Photonic Switching System. 17.1 Introduction. 17.2 Wavelength Division Switching. 17.3 Wavelength
and Time
Division Hybrid Switching. 17.4 Summary. References. 18 Optical Information Processing. 18.1 Introduction. 18.2 Serial
to
Parallel Data Conversion. 18.3 Optical Self
Routing Switch. 18.4 Optical ATM Switch. 18.5 Optical Interconnection. 18.6 Optical Memory. 18.7 Optical Bus. References. Appendix A: Density of States. Appendix B: Density of States Effective Mass. Appendix C: Conductivity Effective Mass. INDEX.