Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
  • Format: ePub

Medical Device Technologies: A Systems Based Overview Using Engineering Standards, Second Edition, is a comprehensive overview of medical device technology, with a unified approach to each device area covering technical operation, clinical need, regulatory issues and standards and historical devices. It takes a systems-based view, balancing breadth with depth to give an accessible introduction to this field. Close ties are drawn between the design, the product and the patient. Exercises at the end of each chapter include traditional homework problems, analysis exercises and four questions…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 63.07MB
Produktbeschreibung
Medical Device Technologies: A Systems Based Overview Using Engineering Standards, Second Edition, is a comprehensive overview of medical device technology, with a unified approach to each device area covering technical operation, clinical need, regulatory issues and standards and historical devices. It takes a systems-based view, balancing breadth with depth to give an accessible introduction to this field. Close ties are drawn between the design, the product and the patient. Exercises at the end of each chapter include traditional homework problems, analysis exercises and four questions from assigned primary literature. Eight laboratory experiments in both electrical and mechanical medical devices are explored.

Each medical device chapter begins with an exposition of appropriate physiology, mathematical modeling or biocompatibility issues and clinical need. A device system description and system diagram provide details on technology function and administration of diagnosis and/or therapy. This systems approach enables the reader to quickly identify the relationships between devices. An accompanying instructor site containing answers to end of chapter exercises, image collections, datasets and solutions for the lab experiments is also included.

  • Covers current research, design issues and engineering standards
  • Includes three significant Food and Drug Administration (FDA) recall case studies which have impacted FDA medical device regulation
  • Presents exercises at the end of each chapter, including problems, analysis exercises and four questions from assigned primary literature
  • Provides eight laboratory experiments that are detailed to provide hands-on reinforcement of device concepts

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Baura received her BS Electrical Engineering degree from Loyola Marymount University, her MS Electrical Engineering and MS Biomedical Engineering degrees from Drexel University, and her PhD Bioengineering degree from the University of Washington. Between her graduate degrees, she worked as a loop transmission systems engineer at AT&T Bell Laboratories. She then spent 13 years in the medical device industry conducting medical device research and managing research and product development at several companies. She holds 20 U.S. patents. In her last industry position, Dr. Baura was Vice President, Research and Chief Scientist at CardioDynamics. In 2006, she returned to academia as a Professor of Medical Devices at Keck Graduate Institute of Applied Life Sciences, which is one of the Claremont Colleges.

Throughout her career, Dr. Baura has championed engineering curriculum excellence. She has written four engineering textbooks, three of which are medical device textbooks. She is an ABET Engineering Accreditation Commissioner. In her new position as Director of Engineering Science at Loyola, she is constructing a general engineering curriculum that incorporates substantial industry input and prepares new engineering graduates for positions in the medical device, semiconductor, and wastewater treatment industries.