Machine Learning in Medicine (eBook, PDF) - Cleophas, Ton J.; Zwinderman, Aeilko H.
-29%
56,95 €
Statt 79,99 €**
56,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*
28 °P sammeln
-29%
56,95 €
Statt 79,99 €**
56,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*

Alle Infos zum eBook verschenken
28 °P sammeln
Als Download kaufen
Statt 79,99 €**
-29%
56,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
28 °P sammeln
Jetzt verschenken
Statt 79,99 €**
-29%
56,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
28 °P sammeln
  • Format: PDF


Machine learning is concerned with the analysis of large data and multiple variables. However, it is also often more sensitive than traditional statistical methods to analyze small data. The first volume reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, and fuzzy modeling. This second volume includes various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, genetic programming, association rule learning, anomaly detection, correspondence analysis, and other…mehr

Produktbeschreibung
Machine learning is concerned with the analysis of large data and multiple variables. However, it is also often more sensitive than traditional statistical methods to analyze small data. The first volume reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, and fuzzy modeling. This second volume includes various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, genetic programming, association rule learning, anomaly detection, correspondence analysis, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Seitenzahl: 231
  • Erscheinungstermin: 30. Mai 2013
  • Englisch
  • ISBN-13: 9789400768864
  • Artikelnr.: 43604587
Inhaltsangabe
Preface.- 1 Introduction to machine learning.- 2 Logistic regression for health profiling.- 3 Optimal scaling: discretization.- 4 Optimal scaling: regularization including ridge, lasso, and elastic net regression.- 5 Partial correlations.- 6 Mixed linear modelling.- 7 Binary partitioning.- 8 Item response modelling.- 9 Time-dependent predictor modelling.- 10 Seasonality assessments.- 11 Non-linear modelling.- 12 Artificial intelligence, multilayer Perceptron modelling.- 13 Artificial intelligence, radial basis function modelling.- 14 Factor analysis.- 15 Hierarchical cluster analysis for unsupervised data.- 16 Partial least squares.- 17 Discriminant analysis for Supervised data.- 18 Canonical regression.- 19 Fuzzy modelling.- 20 Conclusions. Index.
Rezensionen
From the reviews:
"This novel book on machine learning in medicine deals with statistical methods for analyzing complex data involving multiple variables. ... The intended audience includes physicians, clinical researchers, physicians in training, statisticians, and medical students, as well as master's and doctoral students in epidemiology and biostatistics. ... The language is simple and the chapters are well organized. This will be an excellent resource for a quick review of machine learning in medicine, particularly in genetic research, clinical trials, and adverse drug surveillance." (Parthiv Amin, Doody's Book Reviews, September, 2013)