Introduction to Bayesian Statistics (eBook, ePUB) - Bolstad, William M.; Curran, James M.
-14%
107,99 €
Bisher 125,99 €**
107,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Bisher 125,99 €**
107,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Bisher 125,99 €**
-14%
107,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Bisher 125,99 €**
-14%
107,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln

  • Format: ePub


&quote;...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods.&quote; There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 9.75MB
Produktbeschreibung
"e;...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods."e; There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 624
  • Erscheinungstermin: 02.09.2016
  • Englisch
  • ISBN-13: 9781118593226
  • Artikelnr.: 45959473
Autorenporträt
WILLIAM M. BOLSTAD, PhD, is a retired Senior Lecturer in the Department of Statistics at The University of Waikato, New Zealand. Dr. Bolstad's research interests include Bayesian statistics, MCMC methods, recursive estimation techniques, multiprocess dynamic time series models, and forecasting. He is author of Understanding Computational Bayesian Statistics, also published by Wiley. JAMES M. CURRAN is a Professor of Statistics in the Department of Statistics at the University of Auckland, New Zealand. Professor Curran's research interests include the statistical interpretation of forensic evidence, statistical computing, experimental design, and Bayesian statistics. He is the author of two other books including Introduction to Data Analysis with R for Forensic Scientists, published by Taylor and Francis through its CRC brand.
Inhaltsangabe
Preface.

Preface to First Edition.

1. Introduction to Statistical Science.

2. Scientific Data Gathering.

Monte Carlo Exercises.

3. Displaying and Summarizing Data.

Exercises.

4. Logic, Probability, and Uncertainty.

Exercises.

5. Discrete Random Variables.

Exercises.

6. Bayesian Inference for Discrete Random Variables.

Exercises.

Computer Exercises.

7. Continuous Random Variables.

Exercises.

8. Bayesian Inference for Binomial Proportion.

Exercises.

Computer Exercises.

9. Comparing Bayesian and Frequentist Inferences for Proportion.

Exercises.

Monte Carlo Exercises.

10. Bayesian Inference for Poisson.

Exercises.

Computer Exercises.

11. Bayesian Inference for Normal Mean.

Exercises.

Computer Exercises.

12. Comparing Bayesian and Frequentist Inferences for Mean.

Exercises.

13. Bayesian Inference for Difference between Means.

Exercises.

14. Bayesian Inference for Simple Linear Regression.

Exercises.

Computer Exercises.

15. Bayesian Inference for Standard Deviation.

Exercises.

Computer Exercises.

16. Robust Bayesian Methods.

Exercises.

Computer Exercises.

A. Introduction to Calculus.

B. Use of Statistical Tables.

C. Using the Included Minitab Macros.

D. Using the Included R Functions.

E. Answers to Selected Exercises.

Bibliography.

References.

Preface xiii 1 Introduction to Statistical Science 1 1.1 The Scientic Method: A Process for Learning 3 1.2 The Role of Statistics in the Scientic Method 5 1.3 Main Approaches to Statistics 5 1.4 Purpose and Organization of This Text 8 2 Scientic Data Gathering 13 2.1 Sampling from a Real Population 14 2.2 Observational Studies and Designed Experiments 17 Monte Carlo Exercises 23 3 Displaying and Summarizing Data 31 3.1 Graphically Displaying a Single Variable 32 3.2 Graphically Comparing Two Samples 39 3.3 Measures of Location 41 3.4 Measures of Spread 44 3.5 Displaying Relationships Between Two or More Variables 46 3.6 Measures of Association for Two or More Variables 49 Exercises 52 4 Logic, Probability, and Uncertainty 59 4.1 Deductive Logic and Plausible Reasoning 60 4.2 Probability 62 4.3 Axioms of Probability 64 4.4 Joint Probability and Independent Events 65 4.5 Conditional Probability 66 4.6 Bayes' Theorem 68 4.7 Assigning Probabilities 74 4.8 Odds and Bayes Factor 75 4.9 Beat the Dealer 76 Exercises 80 5 Discrete Random Variables 83 5.1 Discrete Random Variables 84 5.2 Probability Distribution of a Discrete Random Variable 86 5.3 Binomial Distribution 90 5.4 Hypergeometric Distribution 92 5.5 Poisson Distribution 93 5.6 Joint Random Variables 96 5.7 Conditional Probability for Joint Random Variables 100 Exercises 104 6 Bayesian Inference for Discrete Random Variables 109 6.1 Two Equivalent Ways of Using Bayes' Theorem 114 6.2 Bayes' Theorem for Binomial with Discrete Prior 116 6.3 Important Consequences of Bayes' Theorem 119 6.4 Bayes' Theorem for Poisson with Discrete Prior 120 Exercises 122 Computer Exercises 126 7 Continuous Random Variables 129 7.1 Probability Density Function 131 7.2 Some Continuous Distributions 135 7.3 Joint Continuous Random Variables 143 7.4 Joint Continuous and Discrete Random Variables 144 Exercises 147 8 Bayesian Inference for Binomial Proportion 149 8.1 Using a Uniform Prior 150 8.2 Using a Beta Prior 151 8.3 Choosing Your Prior 154 8.4 Summarizing the Posterior Distribution 158 8.5 Estimating the Proportion 161 8.6 Bayesian Credible Interval 162 Exercises 164 Computer Exercises 167 9 Comparing Bayesian and Frequentist Inferences for Proportion 169 9.1 Frequentist Interpretation of Probability and Parameters 170 9.2 Point Estimation 171 9.3 Comparing Estimators for Proportion 174 9.4 Interval Estimation 175 9.5 Hypothesis Testing 178 9.6 Testing a One-Sided Hypothesis 179 9.7 Testing a Two-Sided Hypothesis 182 Exercises 187 Monte Carlo Exercises 190 10 Bayesian Inference for Poisson 193 10.1 Some Prior Distributions for Poisson 194 10.2 Inference for Poisson Parameter 200 Exercises 207 Computer Exercises 208 11 Bayesian Inference for Normal Mean 211 11.1 Bayes' Theorem for Normal Mean with a Discrete Prior 211 11.2 Bayes' Theorem for Normal Mean with a Continuous Prior 218 11.3 Choosing Your Normal Prior 222 11.4 Bayesian Credible Interval for Normal Mean 224 11.5 Predictive Density for Next Observation 227 Exercises 230 Computer Exercises 232 12 Comparing Bayesian and Frequentist Inferences for Mean 237 12.1 Comparing Frequentist and Bayesian Point Estimators 238 12.2 Comparing Condence and Credible Intervals for Mean 241 12.3 Testing a One-Sided Hypothesis about a Normal Mean 243 12.4 Testing a Two-Sided Hypothesis about a Normal Mean 247 Exercises 251 13 Bayesian Inference for Di erence Between Means 255 13.1 Independent Random Samples from Two Normal Distributions 256 13.2 Case 1: Equal Variances 257 13.3 Case 2: Unequal Variances 262 13.4 Bayesian Inference for Dierence Between Two Proportions Using Normal Approximation 265 13.5 Normal Random Samples from Paired Experiments 266 Exercises 272 14 Bayesi
Rezensionen
"Like the first edition, this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." ( Technometrics, November 2008) "Highly recommended. Upper division undergraduates; graduate students; professionals." ( CHOICE , April 2008)