Wave Propagation in Viscoelastic and Poroelastic Continua - Schanz, Martin
119,99 €
versandkostenfrei*

inkl. MwSt.
Sofort lieferbar
60 °P sammeln
    Gebundenes Buch

Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to…mehr

Produktbeschreibung
Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.
  • Produktdetails
  • Lecture Notes in Applied and Computational Mechanics 2
  • Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
  • Artikelnr. des Verlages: 10796417
  • 2001. 2001
  • Seitenzahl: 180
  • Erscheinungstermin: 8. Mai 2001
  • Englisch
  • Abmessung: 241mm x 157mm x 17mm
  • Gewicht: 416g
  • ISBN-13: 9783540416326
  • ISBN-10: 3540416323
  • Artikelnr.: 09770055
Inhaltsangabe
1. Introduction.- 2. Convolution quadrature method.- 2.1 Basic theory of the convolution quadrature method.- 2.2 Numerical tests.- 2.2.1 Series expansion of the test functions f1 and f2.- 2.2.2 Computing the integration weights ?n.- 2.2.3 Numerical convolution.- 3. Viscoelastically supported Euler-Bernoulli beam.- 3.1 Integral equation for a beam resting on viscoelastic foundation.- 3.1.1 Fundamental solutions.- 3.1.2 Integral equation.- 3.2 Numerical example.- 3.2.1 Fixed-simply supported beam.- 3.2.2 Fixed-free viscoelastic supported beam.- 4. Time domain boundary element formulation.- 4.1 Integral equation for elastodynamics.- 4.2 Boundary element formulation for elastodynamics.- 4.3 Validation of proposed method: Wave propagation in a rod.- 4.3.1 Influence of the spatial and time discretization.- 4.3.2 Comparison with the "classical" time domain BE formulation.- 5. Viscoelastodynamic boundary element formulation.- 5.1 Viscoelastic constitutive equation.- 5.2 Boundary integral