Bisher 256,99 €**
251,99 €
versandkostenfrei*

inkl. MwSt.
**Früherer Preis
Sofort lieferbar
126 °P sammeln
    Gebundenes Buch

Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and…mehr

Produktbeschreibung
Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and availability of RANS solvers for the prediction of complex ?ow problemssigni?cantly. MEGAFLOWwasinitiated by the?rstaviationresearch programoftheFederalGovernmentin1995undertheleadershipoftheDLR(see Kroll, N. , Fassbender, J. K. (Eds). : MEGAFLOW Numerical Flow Simulation for Aircraft Design; Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 89, Springer, 2005). A network from aircraft industry, DLR and several universities was created with the goal to focus and direct development activities for numerical ?ow simulation towards a common aerodynamic si- lation system providing both a block-structured (FLOWer-Code) and a hybrid (TAU-Code) parallel ?ow prediction capability. Today, both codes have reached a high level of maturity and reliability. They are routinely used at DLR and German aeronautic industry for a wide range of aerodynamic applications. For many universities the MEGAFLOW software represents a platform for the - provementofphysicalmodelsandfortheinvestigationofcomplex?owproblems. The network was established as an e?cient group of very closely co-operating partners with supplementing expertises and experience.
  • Produktdetails
  • Notes on Numerical Fluid Mechanics and Multidisciplinary Design 107
  • Verlag: Springer, Berlin
  • Artikelnr. des Verlages: 12751372
  • Erscheinungstermin: 30. September 2009
  • Englisch
  • Abmessung: 241mm x 167mm x 28mm
  • Gewicht: 640g
  • ISBN-13: 9783642040924
  • ISBN-10: 3642040926
  • Artikelnr.: 26850770
Inhaltsangabe
Reduction of Simulation Time.- Recent Developments of TAU Adaptation Capability.- Adaptive Wall Function for the Prediction of Turbulent Flows.- Acceleration of CFD Processes for Transport Aircraft.- Efficient Combat Aircraft Simulations with the TAU RANS Code.- Improvement of Simulation Quality.- Universal Wall Functions for Aerodynamic Flows: Turbulence Model Consistent Design, Potential and Limitations.- Computational Modelling of Transonic Aerodynamic Flows Using Near-Wall, Reynolds Stress Transport Models.- Transition Prediction for Three-Dimensional Configurations.- Application of Transition Prediction.- Numerical Simulation Quality Assessment for Transport Aircraft.- Fluid Structure Coupling.- Computational Methods for Aero-Structural Analysis and Optimisation of Aircrafts Based on Reduced-Order Structural Models.- Development and Application of TAU-ANSYS Coupling Procedure.- Fluid-Structure Coupling: Simplified Structural Model on Complex Configurations.- Improvement of Shape Optimization Strategies.- Development of an Automated Artificial Neural Network for Numerical Optimization.- modeFRONTIER©, a Framework for the Optimization of Military Aircraft Configurations.- One-Shot Methods for Aerodynamic Shape Optimization.- Automatic Differentiation of FLOWer and MUGRIDO.- Adjoint Methods for Coupled CFD-CSM Optimization.- Aerodynamic and Multidisciplinary Optimization of 3D-Configurations.- Aerodynamic Optimization for Cruise and High-Lift Configurations.- Aerodynamic Optimization of an UCAV Configuration.- Flexible Wing Optimisation Based on Shapes and Structures.- Multidisciplinary Optimization of an UAV Combining CFD and CSM.