-11%
155,99 €
Statt 174,99 €**
155,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*
0 °P sammeln
-11%
155,99 €
Statt 174,99 €**
155,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*

Alle Infos zum eBook verschenken
0 °P sammeln
Als Download kaufen
Statt 174,99 €**
-11%
155,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Statt 174,99 €**
-11%
155,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln
  • Format: PDF


Presents simulation techniques that substantially increasedesigners' control over the oscillationin autonomous circuits This book facilitates a sound understanding of the free-runningoscillation mechanism, the start-up from the noise level, and theestablishment of the steady-state oscillation. It deals with theoperation principles and main characteristics of free-running andinjection-locked oscillators, coupled oscillators, and parametricfrequency dividers. Analysis and Design of Autonomous Microwave Circuitsprovides: * An exploration of the main nonlinear-analysis methods, withemphasis on…mehr

Produktbeschreibung
Presents simulation techniques that substantially increasedesigners' control over the oscillationin autonomous circuits This book facilitates a sound understanding of the free-runningoscillation mechanism, the start-up from the noise level, and theestablishment of the steady-state oscillation. It deals with theoperation principles and main characteristics of free-running andinjection-locked oscillators, coupled oscillators, and parametricfrequency dividers. Analysis and Design of Autonomous Microwave Circuitsprovides: * An exploration of the main nonlinear-analysis methods, withemphasis on harmonic balance and envelope transient methods * Techniques for the efficient simulation of the most commonautonomous regimes * A presentation and comparison of the main stability-analysismethods in the frequency domain * A detailed examination of the instabilization mechanisms thatdelimit the operation bands of autonomous circuits * Coverage of techniques used to eliminate common types ofundesired behavior, such as spurious oscillations, hysteresis, andchaos * A thorough presentation of the oscillator phase noise * A comparison of the main methodologies of phase-noiseanalysis * Techniques for autonomous circuit optimization, based onharmonic balance * A consideration of different design objectives: presetting theoscillation frequency and output power, increasing efficiency,modifying the transient duration, and imposing operation bands Analysis and Design of Autonomous Microwave Circuits is avaluable resource for microwave designers, oscillator designers,and graduate students in RF microwave design.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 600
  • Erscheinungstermin: 18. Februar 2009
  • Englisch
  • ISBN-13: 9780470385890
  • Artikelnr.: 37291657
Autorenporträt
Almudena Suárez, PhD, is a Full Professor at the University of Cantabria, Spain, and a member of its Communications Engineering Department since 1993. She coauthored the book Stability Analysis of Nonlinear Microwave Circuits and contributed two articles to the Encyclopedia of RF and Microwave Engineering (Wiley). Professor Suárez has published dozens of papers in international journals and has been the leading researcher in several R&D projects. Her areas of interest include the nonlinear design of microwave circuits and, especially, stability and phase-noise analysis. She is a Distinguished Microwave Lecturer of IEEE.
Inhaltsangabe
Preface. 1. Oscillator Dynamics. 1.1. Introduction. 1.2. Operational Principle of Free
Running Oscillators. 1.3. Impedance
Admittance Analysis of an Oscillator. 1.4. Frequency
Domain Formulation of an Oscillator Circuit. 1.5. Oscillator Dynamics. 1.6. Phase Noise. 2. Phase Noise. 2.1. Introduction. 2.2. Random Variable and random Processes. 2.3. Noise Sources in Electronic Circuits. 2.4. Derivation of the Oscillator Noise Spectrum Using Time
Domain Analysis. 2.5. Frequency
Domain Analysis of a Noisy Oscillator. 3. Bifurcation Analysis. 3.1. Introduction. 3.2. Representation of Solutions. 3.3. Bifurcations. 4. Injected Oscillators and Frequency Dividers. 4.1. Introduction. 4.2. Injection
Locked Oscillators. 4.3. Frequency Dividers. 4.4. Subharmonically and Ultrasubharmonically Injection
Locked Oscillators. 4.5. Self
Oscillating Mixers. 5. Nonlinear Circuit Simulation. 5.1. Introduction. 5.2. Time
Domain Integration. 5.3. Fast Time
Domain Techniques. 5.4. Harmonic Balance. 5.5. Harmonic Balance Analysis of Autonomous and Synchronized Circuit. 5.6. Envelope Transient. 5.7. Conversion Matrix Approach. 6. Stability Analysis Using Harmonic Balance. 6.1. Introduction. 6.2. Local Stability Analysis. 6.3. Stability Analysis of Free
Running Oscillators. 6.4. Solution Curves Versus a Circuit Parameter. 6.5.Global Stability Analysis. 6.6. Bifurcation Synthesis and Control. 7. Noise Analysis Using Harmonic Balance. 7.1. Introduction. 7.2. Noise in Semiconductor Devices. 7.3. Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System. 7.4. Coupled Phase and Amplitude Noise Calculation. 7.5. Carrier Modulation Approach. 7.6. Conversion Matrix Approach. 7.7. Noise in Synchronized Oscillators. 8. Harmonic Balance Techniques for Oscillator Design. 8.1. Introduction. 8.2. Oscillator Synthesis. 8.3. Design of Voltage
Controlled Oscillators. 8.4. Maximization of Oscillator Efficiency. 8.5. Control of Oscillator Transients. 8.6. Phase Noise Reduction. 9. Stabilization Techniques for Phase Noise Reduction. 9.1. Introduction. 9.2. Self
Injection Topology. 9.3. Use of High
Q Resonators. 9.4. Stabilization Loop. 9.5. Transistor
Based Oscillators. 10. Coupled
Oscillator Systems. 10.1. Introduction. 10.2. Oscillator Systems with Global Coupling. 10.3. Coupled
Oscillator Systems for Beam Steering. 11. Simulation Techniques for Frequency
Divider Design. 11.1. Introduction. 11.2. Types of frequency dividers. 11.3. Design of Transistor
Based Regenerative Frequency Dividers. 11.4. Design of Harmonic Injection Dividers. 11.5. Extension of the Techniques to Subharmonic Injection Oscillators. 12. Circuit Stabilization. 12.1. Introduction. 12.2. Unstable Class AB Amplifier Using Power Combiners. 12.3. Unstable Class E/F Amplifier. 12.4. Unstable Class E Amplifier. 12.5. Stabilization of Oscillator Circuits. 12.6. Stabilization of Multifunction MMIC Chips. Index.