Competitively Inhibited Neural Networks for Adaptive Parameter Estimation (eBook, PDF) - Lemmon, Michael
-29%
73,95 €
Statt 103,99 €**
73,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
37 °P sammeln
-29%
73,95 €
Statt 103,99 €**
73,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
37 °P sammeln
Als Download kaufen
Statt 103,99 €**
-29%
73,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Statt 103,99 €**
-29%
73,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
37 °P sammeln
  • Format: PDF


Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 16.73MB
Produktbeschreibung
Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. Empiricism is, of course, essential to any science for it provides a body of observations allowing initial characterization of the field. Eventually, however, any maturing field must begin the process of validating empirically derived conjectures with rigorous mathematical models. It is in this way that science has always pro ceeded. It is in this way that science provides conclusions that can be used across a variety of applications. This monograph by Michael Lemmon provides just such a theoretical exploration of the role ofcompetition in Artificial Neural Networks. There is "good news" and "bad news" associated with theoretical research in neural networks. The bad news isthat such work usually requires the understanding of and bringing together of results from many seemingly disparate disciplines such as neurobiology, cognitive psychology, theory of differential equations, largc scale systems theory, computer science, and electrical engineering. The good news is that for those capable of making this synthesis, the rewards are rich as exemplified in this monograph.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer US
  • Seitenzahl: 142
  • Erscheinungstermin: 6. Dezember 2012
  • Englisch
  • ISBN-13: 9781461540441
  • Artikelnr.: 44183695
Inhaltsangabe
1 Introduction.- 2 The CINN Equations.- 3 The CINN Algorithm.- 4 The Continuum Model.- 5 CINN Learning.- 6 Parameter Estimation.- 7 Summary.- A Dynamic System Concepts.- B Proofs of Lemmas.- C The Method of Characteristics.- D Simulation Results.