-26%
133,99 €
Statt 181,99 €**
133,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Statt 181,99 €**
133,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Statt 181,99 €**
-26%
133,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Statt 181,99 €**
-26%
133,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln

  • Format: PDF


Scattering-based numerical methods are increasingly applied to thenumerical simulation of distributed time-dependent physicalsystems. These methods, which possess excellent stability andstability verification properties, have appeared in various guisesas the transmission line matrix (TLM) method, multidimensional wavedigital (MDWD) filtering and digital waveguide (DWN) methods. Thistext provides a unified framework for all of these techniques andaddresses the question of how they are related to more standardnumerical simulation techniques. Covering circuit/scattering models in…mehr

Produktbeschreibung
Scattering-based numerical methods are increasingly applied to thenumerical simulation of distributed time-dependent physicalsystems. These methods, which possess excellent stability andstability verification properties, have appeared in various guisesas the transmission line matrix (TLM) method, multidimensional wavedigital (MDWD) filtering and digital waveguide (DWN) methods. Thistext provides a unified framework for all of these techniques andaddresses the question of how they are related to more standardnumerical simulation techniques. Covering circuit/scattering models in electromagnetics,transmission line modelling, elastic dynamics, as well astime-varying and nonlinear systems, this book highlights thegeneral applicability of this technique across a variety ofdisciplines, as well as the inter-relationships between simulationtechniques and digital filter design. * provides a comprehensive overview of scattering-based numericalintegration methods. * reviews the basics of classical electrical network theory, wavedigital filters, and digital waveguide networks. * discusses applications for time-varying and nonlinearsystems. * includes an extensive bibliography containing over 250references. Mixing theory and application with numerical simulation results,this book will be suitable for both experts and readers with alimited background in signal processing and numerical techniques.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 380
  • Erscheinungstermin: 31.08.2004
  • Englisch
  • ISBN-13: 9780470870181
  • Artikelnr.: 37299881
Autorenporträt
Stefan Bilbao received his BA in Physics at Harvard University ('92), then spent two years at the Institut de Recherche et Coordination Acoustique Musicale (IRCAM) in Paris as a student intern. He then completed the MSc and PhD degrees in Electrical Engineering at Stanford University ('96 and '01, respectively), while working at the Center for Computer Research in Music and Acoustics (CCRMA). His current research interests include the application of digital filtering and numerical simulation techniques to the physical modeling of musical instruments.
Inhaltsangabe
Preface.

Foreword.

1. Introduction.

1.1 An Overview of Scattering Methods.

1.2 Questions.

2. Wave Digital Filters.

2.1 Classical Network Theory.

2.2 Wave Digital Elements and Connections.

2.3 Wave Digital Filters and Finite Differences.

3. Multidimensional Wave Digital Filters.

3.1 Symmetric Hyperbolic Systems.

3.2 Coordinate Changes and Grid Generation.

3.3 MD-passivity.

3.4 MD Circuit Elements.3.5 The (1 +1)D Advection Equation.

3.6 The (1 +1)D Transmission Line.

3.7 The (2 +1)D Parallel-plate System.

3.8 Finite-difference Interpretation.

3.9 Initial Conditions.

3.10 Boundary Conditions.

3.11 Balanced Forms.

3.12 Higher-order Accuracy.

4. Digital Waveguide Networks.

4.1 FDTD and TLM.

4.2 Digital Waveguides.

4.3 The (1 +1)D Transmission Line.

4.4 The (2 +1)D Parallel-plate System.

4.5 Initial Conditions.

4.6 Music and Audio Applications of Digital Waveguides.

5. Extensions of Digital Waveguide Networks.

5.1 Alternative Grids in (2 +1)D.

5.2 The (3 +1)D Wave Equation and Waveguide Meshes.

5.3 The Waveguide Mesh in General Curvilinear Coordinates.

5.4 Interfaces between Grids.

6. Incorporating the DWN into the MDWD Framework.

6.1 The (1 +1)D Transmission Line Revisited.

6.2 Alternative MDKC for the (2 + 1)D Parallel-plate System.

6.3 Higher-order Accuracy Revisited.

6.4 Maxwell's Equations.

7. Applications to Vibrating Systems.

7.1 Beam Dynamics.

7.2 Plates.

7.3 Cylindrical Shells.

7.4 Elastic Solids.

8. Time-varying and Nonlinear Systems.

8.1 Time-varying and Nonlinear Circuit Elements.

8.2 Linear Time-varying Distributed Systems.

8.3 Lumped Nonlinear Systems in Musical Acoustics.

8.4 From Wave Digital Principles to Relativity Theory.

8.5 Burger's Equation.

8.6 The Gas Dynamics Equations.

9. Concluding Remarks.

9.1 Answers.

9.2 Questions.

A. Finite Difference Schemes for the Wave Equation.

A.1 Von Neumann Analysis of Difference Schemes.

A.2 Finite Difference Schemes for the (2 + 1)D Wave Equation.

A.3 Finite Difference Schemes for the (3 + 1)D Wave Equation.

B. Eigenvalue and Steady State Problems.

B.1 Introduction.

B.2 Abstract Time Domain Models.

B.3 Typical Eigenvalue Distribution of a Discretized PDE.

B.4 Excitation and Filtering.

B.5 Partial Similarity Transform.

B.6 Steady State Problems.

B.7 Generalization to Multiple Eigenvalues.

B.8 Numerical Example.

Bibliography.

Index.