132,95 €
132,95 €
inkl. MwSt.
Erscheint vor. 22.05.25
66 °P sammeln
132,95 €
Als Download kaufen
132,95 €
inkl. MwSt.
Erscheint vor. 22.05.25
66 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
132,95 €
inkl. MwSt.
Erscheint vor. 22.05.25
Alle Infos zum eBook verschenken
66 °P sammeln
Unser Service für Vorbesteller - Ihr Vorteil ohne Risiko:
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Numerical Methods for Engineering and Data Science guides students in implementing numerical methods in engineering and in assessing their limitations and accuracy, particularly using algorithms from the field of machine learning.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 31.83MB
Andere Kunden interessierten sich auch für
- Rolf WuthrichNumerical Methods for Engineering and Data Science (eBook, ePUB)132,95 €
- Ratnaprabha Ravindra BorhadeEpileptic Seizure Prediction Using Electroencephalogram Signals (eBook, PDF)54,95 €
- Timothy BowerIntroduction to Computational Engineering with MATLAB® (eBook, PDF)64,95 €
- Paulo Romero Martins MacielPerformance, Reliability, and Availability Evaluation of Computational Systems, Volume 2 (eBook, PDF)45,95 €
- Paulo Romero Martins MacielPerformance, Reliability, and Availability Evaluation of Computational Systems, Volume I (eBook, PDF)45,95 €
- Abdelwahab KharabAn Introduction to Numerical Methods (eBook, PDF)59,95 €
- Edwin ZondervanA Numerical Primer for the Chemical Engineer, Second Edition (eBook, PDF)49,95 €
-
-
-
Numerical Methods for Engineering and Data Science guides students in implementing numerical methods in engineering and in assessing their limitations and accuracy, particularly using algorithms from the field of machine learning.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 478
- Erscheinungstermin: 22. Mai 2025
- Englisch
- ISBN-13: 9781040323519
- Artikelnr.: 73737675
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 478
- Erscheinungstermin: 22. Mai 2025
- Englisch
- ISBN-13: 9781040323519
- Artikelnr.: 73737675
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Carole El Ayoubi, PhD, an accomplished engineering professional, currently serves as the Director of Education at the Concordia Institute of Aerospace Design and Innovation (CIADI). In this pivotal role, she also spearheads two undergraduate programs, namely Mechanical Engineering and Aerospace Engineering. She is also a senior lecturer in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University. Dr. El Ayoubi earned her PhD. in mechanical engineering, specializing in aerospace applications, from Concordia University in 2014. With a rich background as an aerodynamics engineer at Pratt & Whitney Canada prior to her doctoral pursuits, she brings invaluable industry experience to her academic leadership. Dr. El Ayoubi is dedicated to fostering multidisciplinary teaching methods and elevating the standards of aerospace education at Concordia University. Passionate about accessibility in higher education, Dr. El Ayoubi firmly believes in making education available to all. Her enthusiasm extends to impactful outreach activities, showcasing her dedication to inspiring the next generation of aerospace professionals.
Rolf Wuthrich, PhD, is a professor at the Department of Mechanical, Industrial and Aerospace Engineering as well as the Department of Chemical and Material Engineering at Concordia University. He earned his Master of Engineering Physics in high energy physics from the École Polytechnique Fédérale de Technologie de Lausanne (Switzerland) and his PhD in advanced manufacturing and electrochemistry from the same university in 2002. His current research focus is on advanced manufacturing and digital transformation in manufacturing, where he is leading a research laboratory on advanced manufacturing with a special focus on electrochemical technologies meeting the demand of Industry 4.0. He develops strategies involving real time data streaming, real time data processing and machine learning to enhance the performance of manufacturing processes and to reduce machining overhead. His teaching interests include numerical methods, modeling, and fundamental courses in mechanical engineering. He is heavily involved in the development of online teaching strategies.
Rolf Wuthrich, PhD, is a professor at the Department of Mechanical, Industrial and Aerospace Engineering as well as the Department of Chemical and Material Engineering at Concordia University. He earned his Master of Engineering Physics in high energy physics from the École Polytechnique Fédérale de Technologie de Lausanne (Switzerland) and his PhD in advanced manufacturing and electrochemistry from the same university in 2002. His current research focus is on advanced manufacturing and digital transformation in manufacturing, where he is leading a research laboratory on advanced manufacturing with a special focus on electrochemical technologies meeting the demand of Industry 4.0. He develops strategies involving real time data streaming, real time data processing and machine learning to enhance the performance of manufacturing processes and to reduce machining overhead. His teaching interests include numerical methods, modeling, and fundamental courses in mechanical engineering. He is heavily involved in the development of online teaching strategies.
1. Introduction Part I - Numerical Methods for Engineering Applications 2.
Numerical Errors 3. Solving Algebraic Equations 4. Systems of Linear
Equations 5. Orthogonality 6 Linear Least Square Regression 7. Polynomial
Interpolation 8. Numerical Integration 9. Initial Value Problems Part II -
Numerical Methods for Data Analysis 10. Machine Learning 11. Regression
Models 12. Model Selection 13. Classification 14. Tree-Based Algorithms
Numerical Errors 3. Solving Algebraic Equations 4. Systems of Linear
Equations 5. Orthogonality 6 Linear Least Square Regression 7. Polynomial
Interpolation 8. Numerical Integration 9. Initial Value Problems Part II -
Numerical Methods for Data Analysis 10. Machine Learning 11. Regression
Models 12. Model Selection 13. Classification 14. Tree-Based Algorithms
1. Introduction Part I - Numerical Methods for Engineering Applications 2.
Numerical Errors 3. Solving Algebraic Equations 4. Systems of Linear
Equations 5. Orthogonality 6 Linear Least Square Regression 7. Polynomial
Interpolation 8. Numerical Integration 9. Initial Value Problems Part II -
Numerical Methods for Data Analysis 10. Machine Learning 11. Regression
Models 12. Model Selection 13. Classification 14. Tree-Based Algorithms
Numerical Errors 3. Solving Algebraic Equations 4. Systems of Linear
Equations 5. Orthogonality 6 Linear Least Square Regression 7. Polynomial
Interpolation 8. Numerical Integration 9. Initial Value Problems Part II -
Numerical Methods for Data Analysis 10. Machine Learning 11. Regression
Models 12. Model Selection 13. Classification 14. Tree-Based Algorithms