Modelling Spatial and Spatial-Temporal Data (eBook, ePUB)
A Bayesian Approach
PAYBACK Punkte
24 °P sammeln!
Analyzes spatial and spatial-temporal data, focuses on key datasets, data analysis using WinBUGS, R, GeoDa. Examines spatial and spatial-temporal data modeling in social, economic sciences. Looks at modeling decisions made in the course of research, undertakes data analysis, interpret results.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Text-to-Speech
- E-Mail des Verlags für Barrierefreiheitsfragen: ebookqueries@tandf.co.uk
- Navigation über vor-/zurück-Elemente ohne Inhaltsverzeichnis
- Seitennummerierung folgt dem gedruckten Werk
- Mathematische Inhalte in MathML für assistive Technologien
- Text und Medien in logischer Lesereihenfolge angeordnet
- Navigierbarer Index mit direktem Zugriff auf Indexbegriffe
- Navigierbares Inhaltsverzeichnis für direkten Zugriff auf Text und Medien
Robert Haining is Emeritus Professor in Human Geography, University of Cambridge, England. He is the author of Spatial Data Analysis in the Social and Environmental Sciences (1990) and Spatial Data Analysis: Theory and Practice (2003). He is a Fellow of the RGS-IBG and of the Academy of Social Sciences.
Guangquan Li is Senior Lecturer in Statistics in Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, England. His research includes the development and application of Bayesian methods in the social and health sciences. He is a Fellow of the Royal Statistical Society.
Guangquan Li is Senior Lecturer in Statistics in Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, England. His research includes the development and application of Bayesian methods in the social and health sciences. He is a Fellow of the Royal Statistical Society.
Produktbeschreibung
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 400
- Erscheinungstermin: 27. Januar 2020
- Englisch
- ISBN-13: 9780429529108
- Artikelnr.: 58571418
"Knowledge on statistical theory and regression concepts are essential to read, comprehend, appreciate, and use the rich contents of this fascinating book. This well-written book is a good source for the Bayesian concepts and methods to practice the spatial-temporal analysis using R and WinBugs codes . . . I recommend this book to economics, health, statistics and computing professionals and researchers."
-Ramalingam Shanmugam, Texas State University
"Overall, this book stands out among other spatial statistics books because of its ability to help readers develop practical modeling skills. Specifically, R code snippets are provided when specific R packages or functions are needed to handle geospatial data sets. The impressive number of case studies provide real-world guidance on how to adapt the same modeling strategies, with the accompanyingWinBUGS code, to other data sets. ... In summary, this book is an excellent resource for graduate students, statisticians, and quantitative researchers who are interested in analyzing areal spatial data. The inclusion of both spatial hierarchical models and econometrics models is particularly unique. Finally, the book's organization, contents, and writing style also encourage self-learning."
-Howard H. Chang in Biometrics, March 2022
-Ramalingam Shanmugam, Texas State University
"Overall, this book stands out among other spatial statistics books because of its ability to help readers develop practical modeling skills. Specifically, R code snippets are provided when specific R packages or functions are needed to handle geospatial data sets. The impressive number of case studies provide real-world guidance on how to adapt the same modeling strategies, with the accompanyingWinBUGS code, to other data sets. ... In summary, this book is an excellent resource for graduate students, statisticians, and quantitative researchers who are interested in analyzing areal spatial data. The inclusion of both spatial hierarchical models and econometrics models is particularly unique. Finally, the book's organization, contents, and writing style also encourage self-learning."
-Howard H. Chang in Biometrics, March 2022
Für dieses Produkt wurde noch keine Bewertung abgegeben. Wir würden uns sehr freuen, wenn du die erste Bewertung schreibst!
Eine Bewertung schreiben
Eine Bewertung schreiben
Andere Kunden interessierten sich für