Minimum Divergence Methods in Statistical Machine Learning (eBook, PDF)

Minimum Divergence Methods in Statistical Machine Learning (eBook, PDF)

From an Information Geometric Viewpoint

Versandkostenfrei!
Sofort per Download lieferbar
105,95 €
inkl. MwSt.
Alle Infos zum eBook verschenken
Weitere Ausgaben:
PAYBACK Punkte
53 °P sammeln!
This book explores minimum divergence methods of statistical machine learning for estimation, regression, prediction, and so forth, in which we engage in information geometry to elucidate their intrinsic properties of the corresponding loss functions, learning algorithms, and statistical models. One of the most elementary examples is Gauss's least squares estimator in a linear regression model, in which the estimator is given by minimization of the sum of squares between a response vector and a vector of the linear subspace hulled by explanatory vectors. This is extended to Fisher's maximum li...

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.