In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear.
- Presents a comprehensive and practical overview of machine learning, data mining and AI techniques for a broad multidisciplinary audience
- Serves readers who are interested in statistics, analytics and modeling, and those who wish to deepen their knowledge in programming through the use of R
- Teaches readers how to apply machine learning techniques to a wide range of data and subject areas
- Presents data in a graphically appealing way, promoting greater information transparency and interactive learning
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.