Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
~Qing Zhou, UCLA
"The book gives an overview of Bayesian statistical modeling with a focus on the building blocks for fitting and analyzing hierarchical models. The book uses a number of interesting and realistic examples to illustrate the methods. The computational focus is in the use of JAGS, as a tool to perform Bayesian inference using Markov chain Monte Carlo methods...It can be targeted as a textbook for upper-division undergraduate students in statistics and some areas of science, engineering and social sciences with an interest in a reasonably formal development of data analytic methods and uncertainty quantification. It could also be used for a Master's class in statistical modeling."
~Bruno Sansó, University of California Santa Cruz
"The given manuscript sample is technically correct, clearly written, and at an appropriate level of difficulty... I enjoyed the real-life problems in the Chapter 1 exercises. I especially like the problem on the Federalist Papers, because the students can revisit this problem and perform more powerful inferences using the advanced Bayesian methods that they will learn later in the textbook... I would seriously consider adopting the book as a required textbook. This text provides more details, R codes, and illuminating visualizations compared to competing books, and more quickly introduces a broad scope of regression models that are important in practical applications."
~Arman Sabbaghi, Purdue University
"The authors are leading researchers and experts in Bayesian statistics. I believe this book is likely to be an excellent textbook for an introductory course targeting at first-year graduate students or
undergraduate statistics majors..." (Qing Zhou, UCLA)
"I would seriously consider adopting the book as a required textbook. This text provides more details, R codes, and illuminating visualizations compared to competing books, and more quickly introduces a broad scope of regression models that are important in practical applications..." (Arman Sabbaghi, Purdue University)
"The book gives an overview of Bayesian statistical modeling with a focus on the building blocks for fitting and analyzing hierarchical models. The book uses a number of interesting and realistic examples to illustrate the methods. The computational focus is in the use of JAGS, as a tool to perform Bayesian inference using Markov chain Monte Carlo methods...It can be targeted as a textbook for upper-division undergraduate students in statistics and some areas of science, engineering and social sciences with an interest in a reasonably formal development of data analytic methods and uncertainty quantification. It could also be used for a Master's class in statistical modeling." (Bruno Sansó, University of California Santa Cruz)