
Miroslav Kubat
eBook, PDF
An Introduction to Machine Learning (eBook, PDF)
PAYBACK Punkte
24 °P sammeln!
Miroslav Kubat, Associate Professor at the University of Miami, has been teaching and studying machine learning for over 25 years. He has published more than 100 peer-reviewed papers, co-edited two books, served on the program committees of over 60 conferences and workshops, and is an editorial board member of three scientific journals. He is widely credited with co-pioneering research in two major branches of the discipline: induction of time-varying concepts and learning from imbalanced training sets. He also contributed to research in induction from multi-label examples, induction of hierarchically organized classes, genetic algorithms, and initialization of neural networks. Professor Kubat is also known for his many practical applications of machine learning, ranging from oil-spill detection in radar images to text categorization to tumor segmentation in MR images.
Produktdetails
- Verlag: Springer Nature Switzerland
- Seitenzahl: 458
- Erscheinungstermin: 25. September 2021
- Englisch
- ISBN-13: 9783030819354
- Artikelnr.: 62636386
"Miroslav Kubat's Introduction to Machine Learning is an excellent overview of a broad range of Machine Learning (ML) techniques. It fills a longstanding need for texts that cover the middle ground of neither oversimplifying nor too technical explanations of key concepts of key Machine Learning algorithms. ... All in all it is a very informative and instructive read which is well suited for undergraduate students and aspiring data scientists." (Holger K. von Joua, Google+, plus.google.com, December, 2016)
"It is superbly organized: each section includes a 'what have you learned' summary, and every chapter has a short summary, accompanying (brief) historical remarks, and a slew of exercises. ... In most of the chapters, there are very clear examples, well chosen and illustrated, that really help the reader understand each concept. ... I did learn quite a bit about very basic machine learning by reading this book." (Jacques Carette, Computing Reviews, January, 2016)
"It is superbly organized: each section includes a 'what have you learned' summary, and every chapter has a short summary, accompanying (brief) historical remarks, and a slew of exercises. ... In most of the chapters, there are very clear examples, well chosen and illustrated, that really help the reader understand each concept. ... I did learn quite a bit about very basic machine learning by reading this book." (Jacques Carette, Computing Reviews, January, 2016)
Für dieses Produkt wurde noch keine Bewertung abgegeben. Wir würden uns sehr freuen, wenn du die erste Bewertung schreibst!
Eine Bewertung schreiben
Eine Bewertung schreiben
Andere Kunden interessierten sich für