
Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis (eBook, PDF)
Versandkostenfrei!
Sofort per Download lieferbar
73,95 €
inkl. MwSt.
Weitere Ausgaben:
PAYBACK Punkte
37 °P sammeln!
The present book is devoted to problems of adaptation ofartificial neural networks to robust fault diagnosis schemes. Itpresents neural networks-based modelling and estimation techniques usedfor designing robust fault diagnosis schemes for non-linear dynamic systems.A part of the book focuses on fundamental issues such as architectures ofdynamic neural networks, methods for designing of neural networks and faultdiagnosis schemes as well as the importance of robustness. The book is of a tutorialvalue and can be perceived as a good starting point for the new-comersto this field. The book is also...
The present book is devoted to problems of adaptation of
artificial neural networks to robust fault diagnosis schemes. It
presents neural networks-based modelling and estimation techniques used
for designing robust fault diagnosis schemes for non-linear dynamic systems.
A part of the book focuses on fundamental issues such as architectures of
dynamic neural networks, methods for designing of neural networks and fault
diagnosis schemes as well as the importance of robustness. The book is of a tutorial
value and can be perceived as a good starting point for the new-comers
to this field. The book is also devoted to advanced schemes of description of
neural model uncertainty. In particular, the methods of computation of neural
networks uncertainty with robust parameter estimation are presented. Moreover,
a novel approach for system identification with the state-space GMDH
neural network is delivered.
All the concepts described in this book are illustrated by both simple
academic illustrative examples and practical applications.
artificial neural networks to robust fault diagnosis schemes. It
presents neural networks-based modelling and estimation techniques used
for designing robust fault diagnosis schemes for non-linear dynamic systems.
A part of the book focuses on fundamental issues such as architectures of
dynamic neural networks, methods for designing of neural networks and fault
diagnosis schemes as well as the importance of robustness. The book is of a tutorial
value and can be perceived as a good starting point for the new-comers
to this field. The book is also devoted to advanced schemes of description of
neural model uncertainty. In particular, the methods of computation of neural
networks uncertainty with robust parameter estimation are presented. Moreover,
a novel approach for system identification with the state-space GMDH
neural network is delivered.
All the concepts described in this book are illustrated by both simple
academic illustrative examples and practical applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.