Vision-basierte Deep-Web-Datenextraktion für Web-Dokument-Clustering
M. Lavanya
Broschiertes Buch

Vision-basierte Deep-Web-Datenextraktion für Web-Dokument-Clustering

Diese Arbeit schlägt einen Ansatz zur visuellen Datenextraktion für das Clustering von Webdokumenten (VDEC) vor.

Versandkostenfrei!
Versandfertig in 6-10 Tagen
79,90 €
inkl. MwSt.
PAYBACK Punkte
0 °P sammeln!
Der VDEC-Ansatz besteht aus zwei Phasen: 1) Vision-basierte Webdatenextraktion und 2) Clustering von Webdokumenten. In Phase 1 werden die Webseiteninformationen in verschiedene Chunks segmentiert, aus denen überschüssiges Rauschen und doppelte Chunks mit Hilfe von drei Parametern wie Hyperlink-Anteil, Rauschwert und Kosinusähnlichkeit entfernt werden. Um die relevanten Chunks zu identifizieren, werden drei Parameter wie die Relevanz des Titelworts, die auf der Häufigkeit von Schlüsselwörtern basierende Chunk-Auswahl und Positionsmerkmale verwendet, und dann wird aus diesen Hauptchunks ei...