Transient problem for Boolean Monomial Dynamical Systems

Transient problem for Boolean Monomial Dynamical Systems

Towards a solution of the transient problem for boolean monomial dynamical systems

Versandkostenfrei!
Versandfertig in 6-10 Tagen
26,99 €
inkl. MwSt.
PAYBACK Punkte
13 °P sammeln!
A problem of interest in finite dynamical systems is to determine when such a system reaches equilibrium, i.e., under what conditions is it a fixed point system. Moreover, given a fixed point system, how many time steps are required to reach a fixed point, i.e., what is its transient? Dorothy Bollman and Omar Colón have shown that a Boolean Monomial Dynamical System (BMDS) f is a fixed point system if and only if every strongly connected component of the dependency graph G_f of f is primitive and in fact, when G_f is strongly connected, the transient of f is equal to the exponent of G_f. Furt...