- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
In this thorough and coherent introduction to tau functions, Harnad and Balogh start with the basics and extend right through to the most recent research results. This monograph is ideal for graduates or researchers in related fields unacquainted with the full range of applications of the theory of tau functions.
Andere Kunden interessierten sich auch für
- John C. CollinsRenormalization47,99 €
- Yuri Makeenko (Institute of Theoretical and M Experimental PhysicsMethods of Contemporary Gauge Theory52,99 €
- Rodolfo Gambini (Uruguay Universidad de la Republica)Loops, Knots, Gauge Theories and Quantum Gravity46,99 €
- P. D. B. CollinsAn Introduction to Regge Theory and High Energy Physics42,99 €
- Michael CreutzQuarks, Gluons and Lattices38,99 €
- Joseph I. Kapusta (University of Minnesota)Finite-Temperature Field Theory52,99 €
- George Jaroszkiewicz (University of Nottingham)Quantized Detector Networks47,99 €
-
-
-
In this thorough and coherent introduction to tau functions, Harnad and Balogh start with the basics and extend right through to the most recent research results. This monograph is ideal for graduates or researchers in related fields unacquainted with the full range of applications of the theory of tau functions.
Produktdetails
- Produktdetails
- Cambridge Monographs on Mathematical Physics
- Verlag: Cambridge University Press
- Seitenzahl: 520
- Erscheinungstermin: 4. Februar 2021
- Englisch
- Abmessung: 244mm x 170mm x 30mm
- Gewicht: 1074g
- ISBN-13: 9781108492683
- ISBN-10: 1108492681
- Artikelnr.: 59581329
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Cambridge Monographs on Mathematical Physics
- Verlag: Cambridge University Press
- Seitenzahl: 520
- Erscheinungstermin: 4. Februar 2021
- Englisch
- Abmessung: 244mm x 170mm x 30mm
- Gewicht: 1074g
- ISBN-13: 9781108492683
- ISBN-10: 1108492681
- Artikelnr.: 59581329
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
John Harnad is Director of the Mathematical Physics Laboratory at the Centre de Recherches Mathématiques, and Professor of Mathematics at Concordia University in Montréal. Over his career he has made numerous contributions to a variety of fields of mathematical physics, including: gauge field theory, integrable systems, random matrices, isomonodromic deformations and generating functions for graphical enumeration. He was the recipient of the 2006 Canadian Association of Physicists Prize in Theoretical and Mathematical Physics.
Preface
List of symbols
1. Examples
2. KP flows and the Sato-Segal-Wilson Grassmannian
3. The KP hierarchy and its standard reductions
4. Infinite dimensional Grassmannians
5. Fermionic representation of tau functions and Baker functions
6. Finite dimensional reductions of the infinite Grassmannian and their associated tau functions
7. Other related integrable hierarchies
8. Convolution symmetries
9. Isomonodromic deformations
10. Integrable integral operators and dual isomonodromic deformations
11. Random matrix models I. Partition functions and correlators
12. Random matrix models II. Level spacings
13. Generating functions for characters, intersection indices and Brézin-Hikami matrix models
14. Generating functions for weighted Hurwitz numbers: enumeration of branched coverings
Appendix A. Integer partitions
Appendix B. Determinantal and Pfaffian identities
Appendix C. Grassmann manifolds and flag manifolds
Appendix D. Symmetric functions
Appendix E. Finite dimensional fermions: Clifford and Grassmann algebras, spinors, isotropic Grassmannians
Appendix F. Riemann surfaces, holomorphic differentials and theta functions
Appendix G. Orthogonal polynomials
Appendix H. Solutions of selected exercises
References
Alphabetical Index.
List of symbols
1. Examples
2. KP flows and the Sato-Segal-Wilson Grassmannian
3. The KP hierarchy and its standard reductions
4. Infinite dimensional Grassmannians
5. Fermionic representation of tau functions and Baker functions
6. Finite dimensional reductions of the infinite Grassmannian and their associated tau functions
7. Other related integrable hierarchies
8. Convolution symmetries
9. Isomonodromic deformations
10. Integrable integral operators and dual isomonodromic deformations
11. Random matrix models I. Partition functions and correlators
12. Random matrix models II. Level spacings
13. Generating functions for characters, intersection indices and Brézin-Hikami matrix models
14. Generating functions for weighted Hurwitz numbers: enumeration of branched coverings
Appendix A. Integer partitions
Appendix B. Determinantal and Pfaffian identities
Appendix C. Grassmann manifolds and flag manifolds
Appendix D. Symmetric functions
Appendix E. Finite dimensional fermions: Clifford and Grassmann algebras, spinors, isotropic Grassmannians
Appendix F. Riemann surfaces, holomorphic differentials and theta functions
Appendix G. Orthogonal polynomials
Appendix H. Solutions of selected exercises
References
Alphabetical Index.
Preface
List of symbols
1. Examples
2. KP flows and the Sato-Segal-Wilson Grassmannian
3. The KP hierarchy and its standard reductions
4. Infinite dimensional Grassmannians
5. Fermionic representation of tau functions and Baker functions
6. Finite dimensional reductions of the infinite Grassmannian and their associated tau functions
7. Other related integrable hierarchies
8. Convolution symmetries
9. Isomonodromic deformations
10. Integrable integral operators and dual isomonodromic deformations
11. Random matrix models I. Partition functions and correlators
12. Random matrix models II. Level spacings
13. Generating functions for characters, intersection indices and Brézin-Hikami matrix models
14. Generating functions for weighted Hurwitz numbers: enumeration of branched coverings
Appendix A. Integer partitions
Appendix B. Determinantal and Pfaffian identities
Appendix C. Grassmann manifolds and flag manifolds
Appendix D. Symmetric functions
Appendix E. Finite dimensional fermions: Clifford and Grassmann algebras, spinors, isotropic Grassmannians
Appendix F. Riemann surfaces, holomorphic differentials and theta functions
Appendix G. Orthogonal polynomials
Appendix H. Solutions of selected exercises
References
Alphabetical Index.
List of symbols
1. Examples
2. KP flows and the Sato-Segal-Wilson Grassmannian
3. The KP hierarchy and its standard reductions
4. Infinite dimensional Grassmannians
5. Fermionic representation of tau functions and Baker functions
6. Finite dimensional reductions of the infinite Grassmannian and their associated tau functions
7. Other related integrable hierarchies
8. Convolution symmetries
9. Isomonodromic deformations
10. Integrable integral operators and dual isomonodromic deformations
11. Random matrix models I. Partition functions and correlators
12. Random matrix models II. Level spacings
13. Generating functions for characters, intersection indices and Brézin-Hikami matrix models
14. Generating functions for weighted Hurwitz numbers: enumeration of branched coverings
Appendix A. Integer partitions
Appendix B. Determinantal and Pfaffian identities
Appendix C. Grassmann manifolds and flag manifolds
Appendix D. Symmetric functions
Appendix E. Finite dimensional fermions: Clifford and Grassmann algebras, spinors, isotropic Grassmannians
Appendix F. Riemann surfaces, holomorphic differentials and theta functions
Appendix G. Orthogonal polynomials
Appendix H. Solutions of selected exercises
References
Alphabetical Index.