
Stochastische Modelle der Versicherungsmathematik
Versandkostenfrei!
Erscheint vorauss. 13. Oktober 2025
19,99 €
inkl. MwSt.
PAYBACK Punkte
0 °P sammeln!
Das Ziel dieses kompakten und einführenden Lehrbuches ist es, im Rahmen des Stoffumfangs einer vierstündigen Mathematikvorlesung wesentliche stochastische Modelle der Versicherungsmathematik systematisch einzuführen und in ihren Grundzügen zu analysieren.Das Buch gibt eine Einführung u.a. in die Themen:Lebensversicherungsmathematik, insbesondere zufällige Zahlungsströme und Satz von Hattendorff Schadenversicherungsmathematik, insbesondere Risiko- und Ruintheorie, auch für Großschäden Prämienberechnungsprinzipien, Risikomaße und ErfahrungstarifierungDas Buch legt einen Schwerpunkt a...
Das Ziel dieses kompakten und einführenden Lehrbuches ist es, im Rahmen des Stoffumfangs einer vierstündigen Mathematikvorlesung wesentliche stochastische Modelle der Versicherungsmathematik systematisch einzuführen und in ihren Grundzügen zu analysieren.
Das Buch gibt eine Einführung u.a. in die Themen:
Lebensversicherungsmathematik, insbesondere zufällige Zahlungsströme und Satz von Hattendorff
Schadenversicherungsmathematik, insbesondere Risiko- und Ruintheorie, auch für Großschäden
Prämienberechnungsprinzipien, Risikomaße und Erfahrungstarifierung
Das Buch legt einen Schwerpunkt auf die Erläuterung klassischer und teils fortgeschrittener stochastischer und maßtheoretischer Methoden und Ergebnisse unter Rückgriff auf möglichst vollständige Beweise. Geeignet ist das Buch für fortgeschrittene Bachelor- sowie Master-Studierende mathematischer Studiengänge mit Vorkenntnissen in Maß-, Integrations- und Wahrscheinlichkeitstheorie.
Das Buch gibt eine Einführung u.a. in die Themen:
Lebensversicherungsmathematik, insbesondere zufällige Zahlungsströme und Satz von Hattendorff
Schadenversicherungsmathematik, insbesondere Risiko- und Ruintheorie, auch für Großschäden
Prämienberechnungsprinzipien, Risikomaße und Erfahrungstarifierung
Das Buch legt einen Schwerpunkt auf die Erläuterung klassischer und teils fortgeschrittener stochastischer und maßtheoretischer Methoden und Ergebnisse unter Rückgriff auf möglichst vollständige Beweise. Geeignet ist das Buch für fortgeschrittene Bachelor- sowie Master-Studierende mathematischer Studiengänge mit Vorkenntnissen in Maß-, Integrations- und Wahrscheinlichkeitstheorie.