
Smoothing Techniques for Curve Estimation
Proceedings of a Workshop held in Heidelberg, April 2-4, 1979
Herausgegeben: Gasser, T.; Rosenblatt, M.
PAYBACK Punkte
18 °P sammeln!
Nonparametric curve estimation.- A tree-structured approach to nonparametric multiple regression.- Kernel estimation of regression functions.- Total least squares.- Some theoretical results on Tukey¿s 3R smoother.- Bias- and efficiency-robustness of general M-estimators for regression with random carriers.- Approximate conditional-mean type smoothers and interpolators.- Optimal convergence properties of kernel estimates of derivatives of a density function.- Density quantile estimation approach to statistical data modelling.- Global measures of deviation for kernel and nearest neighbor densit...
Nonparametric curve estimation.- A tree-structured approach to nonparametric multiple regression.- Kernel estimation of regression functions.- Total least squares.- Some theoretical results on Tukey¿s 3R smoother.- Bias- and efficiency-robustness of general M-estimators for regression with random carriers.- Approximate conditional-mean type smoothers and interpolators.- Optimal convergence properties of kernel estimates of derivatives of a density function.- Density quantile estimation approach to statistical data modelling.- Global measures of deviation for kernel and nearest neighbor density estimates.- Some comments on the asymptotic behavior of robust smoothers.- Cross-validation techniques for smoothing spline functions in one or two dimensions.- Convergence rates of "thin plate" smoothing splines wihen the data are noisy.