Michael Krivelevich (Tel-Aviv University), Konstantinos Panagiotou (Universitat Munchen), Mathew Penrose (University of Bath)
Random Graphs, Geometry and Asymptotic Structure
Herausgeber: Fountoulakis, Nikolaos; Hefetz, Dan
Michael Krivelevich (Tel-Aviv University), Konstantinos Panagiotou (Universitat Munchen), Mathew Penrose (University of Bath)
Random Graphs, Geometry and Asymptotic Structure
Herausgeber: Fountoulakis, Nikolaos; Hefetz, Dan
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A concise introduction, aimed at young researchers, to recent developments of a geometric and topological nature in random graphs.
Andere Kunden interessierten sich auch für
- Khee-Meng KohIntroduction to Graph Theory: Solutions Manual64,99 €
- Alan Frieze (Pennsylvania Carnegie Mellon University)Random Graphs and Networks: A First Course61,99 €
- Topics in Chromatic Graph Theory164,99 €
- Gary ChartrandA First Course in Graph Theory33,99 €
- Gary ChartrandChromatic Graph Theory50,99 €
- Chunwei SongLattice Path Combinatorics and Special Counting Sequences69,99 €
- John ClarkA First Look at Graph Theory46,99 €
-
-
-
A concise introduction, aimed at young researchers, to recent developments of a geometric and topological nature in random graphs.
Produktdetails
- Produktdetails
- London Mathematical Society Student Texts
- Verlag: Cambridge University Press
- Seitenzahl: 127
- Erscheinungstermin: 26. April 2016
- Englisch
- Abmessung: 226mm x 151mm x 10mm
- Gewicht: 190g
- ISBN-13: 9781316501917
- ISBN-10: 1316501914
- Artikelnr.: 44546731
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- London Mathematical Society Student Texts
- Verlag: Cambridge University Press
- Seitenzahl: 127
- Erscheinungstermin: 26. April 2016
- Englisch
- Abmessung: 226mm x 151mm x 10mm
- Gewicht: 190g
- ISBN-13: 9781316501917
- ISBN-10: 1316501914
- Artikelnr.: 44546731
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Professor Michael Krivelevich is a renowned expert on the theory of random graphs. He has written over 170 research papers, more than 100 of them in the last ten years. Most of his publications are on random graphs and related fields, such as extremal combinatorics, positional games theory and theoretical computer science.
Editors' introduction
Part I. Long Paths and Hamiltonicity in Random Graphs: 1. Introduction
2. Tools
3. Long paths in random graphs
4. The appearance of Hamilton cycles in random graphs
References for Part I
Part II. Random Graphs from Restricted Classes: 1. Introduction
2. Random trees
3. Random graphs from block-stable classes
References for Part II
Part III. Lectures on Random Geometric Graphs: 1. Introduction
2. Edge counts
3. Edge counts: normal approximation
4. The maximum degree
5. A sufficient condition for connectivity
6. Connectivity and Hamiltonicity
7. Solutions to exercises
References for Part III
Part IV. On Random Graphs from a Minor-closed Class: 1. Introduction
2. Properties of graph classes
3. Bridge-addability, being connected and the fragment
4 Growth constants
5. Unlabelled graphs
6. Smoothness
7. Concluding remarks
References for Part IV
Index.
Part I. Long Paths and Hamiltonicity in Random Graphs: 1. Introduction
2. Tools
3. Long paths in random graphs
4. The appearance of Hamilton cycles in random graphs
References for Part I
Part II. Random Graphs from Restricted Classes: 1. Introduction
2. Random trees
3. Random graphs from block-stable classes
References for Part II
Part III. Lectures on Random Geometric Graphs: 1. Introduction
2. Edge counts
3. Edge counts: normal approximation
4. The maximum degree
5. A sufficient condition for connectivity
6. Connectivity and Hamiltonicity
7. Solutions to exercises
References for Part III
Part IV. On Random Graphs from a Minor-closed Class: 1. Introduction
2. Properties of graph classes
3. Bridge-addability, being connected and the fragment
4 Growth constants
5. Unlabelled graphs
6. Smoothness
7. Concluding remarks
References for Part IV
Index.
Editors' introduction
Part I. Long Paths and Hamiltonicity in Random Graphs: 1. Introduction
2. Tools
3. Long paths in random graphs
4. The appearance of Hamilton cycles in random graphs
References for Part I
Part II. Random Graphs from Restricted Classes: 1. Introduction
2. Random trees
3. Random graphs from block-stable classes
References for Part II
Part III. Lectures on Random Geometric Graphs: 1. Introduction
2. Edge counts
3. Edge counts: normal approximation
4. The maximum degree
5. A sufficient condition for connectivity
6. Connectivity and Hamiltonicity
7. Solutions to exercises
References for Part III
Part IV. On Random Graphs from a Minor-closed Class: 1. Introduction
2. Properties of graph classes
3. Bridge-addability, being connected and the fragment
4 Growth constants
5. Unlabelled graphs
6. Smoothness
7. Concluding remarks
References for Part IV
Index.
Part I. Long Paths and Hamiltonicity in Random Graphs: 1. Introduction
2. Tools
3. Long paths in random graphs
4. The appearance of Hamilton cycles in random graphs
References for Part I
Part II. Random Graphs from Restricted Classes: 1. Introduction
2. Random trees
3. Random graphs from block-stable classes
References for Part II
Part III. Lectures on Random Geometric Graphs: 1. Introduction
2. Edge counts
3. Edge counts: normal approximation
4. The maximum degree
5. A sufficient condition for connectivity
6. Connectivity and Hamiltonicity
7. Solutions to exercises
References for Part III
Part IV. On Random Graphs from a Minor-closed Class: 1. Introduction
2. Properties of graph classes
3. Bridge-addability, being connected and the fragment
4 Growth constants
5. Unlabelled graphs
6. Smoothness
7. Concluding remarks
References for Part IV
Index.