32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

The Pseudo Random Arterial Modulation (PRAM) is a non-invasive MRI based method to measure blood flow. It does not require any contrast agent but rather uses water protons in the body as the contrast. PRAM is based on a pseudo random sequence of inversions and non-inversions of the arterial blood using radio frequency (RF) pulses at a labeling plane inferior to the imaging plane. A series of images are taken at the imaging plane and flow reconstructed from the transit time measurements. PRAM does not require separate control and label acquisition as is common in Arterial Spin Labeling (ASL)…mehr

Produktbeschreibung
The Pseudo Random Arterial Modulation (PRAM) is a non-invasive MRI based method to measure blood flow. It does not require any contrast agent but rather uses water protons in the body as the contrast. PRAM is based on a pseudo random sequence of inversions and non-inversions of the arterial blood using radio frequency (RF) pulses at a labeling plane inferior to the imaging plane. A series of images are taken at the imaging plane and flow reconstructed from the transit time measurements. PRAM does not require separate control and label acquisition as is common in Arterial Spin Labeling (ASL) but rather measures the distribution of transit times to a voxel within one integrated scan. The PRAM method has been tested on a flow phantom and the results were in confirmation with the theoretical flow and velocity measurements. Subsequently the PRAM method was tested on a human leg and the results were comparable with the Ultrasound measurements. The final testing phase was performed on ahuman brain and the results were compared with the phased contrast MRA. The PRAM can measure the velocity profile and the transit time accurately and efficiently on any organ such as human brain.
Autorenporträt
Dr. Tehrani is the MRI research physicist at Rutgers University Brain Imaging Center. He has recevied his Ph.D. in Biomedical Engineering from Columbia University, his MS and ME in Biomedical and computer Engineering from Rensselaer Polytechnic Institue, and BS in physics from University of Tehran. He has been working in MRI field since 1995.