
Prediction and Evaluation of Hardened Concrete Strength
Based on Machine Learning and Mixture Composition
Versandkostenfrei!
Versandfertig in 6-10 Tagen
38,99 €
inkl. MwSt.
PAYBACK Punkte
19 °P sammeln!
This open access book monitors the development of the temperature field within concrete structures and, based on the Arrhenius equation, constructs F-P maturity equations applicable to different temperature ranges. It investigates the impact of hydration rate on the strength prediction method of the maturity equation. Furthermore, the book employs artificial neural network theory to improve the accuracy of early concrete strength predictions, optimizing the neural network model to develop a more precise and widely applicable prediction model. An intelligent program is developed using MATLAB, f...
This open access book monitors the development of the temperature field within concrete structures and, based on the Arrhenius equation, constructs F-P maturity equations applicable to different temperature ranges. It investigates the impact of hydration rate on the strength prediction method of the maturity equation. Furthermore, the book employs artificial neural network theory to improve the accuracy of early concrete strength predictions, optimizing the neural network model to develop a more precise and widely applicable prediction model. An intelligent program is developed using MATLAB, facilitating rapid strength prediction and assessment on construction sites using measured parameters.