Brigitte Baldi, David S. Moore
Practice of Statistics in the Life Sciences, Digital Update (International Edition)
Brigitte Baldi, David S. Moore
Practice of Statistics in the Life Sciences, Digital Update (International Edition)
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Now available with Macmillan's ground-breaking online learning platform Achieve, The Practice of Statistics in the Life Sciences gives biology students an introduction to statistical practice all their own. It covers essential statistical topics with examples and exercises drawn from across the life sciences, including the fields of nursing, public health, and allied health. Achieve for The Practice of Statistics in the Life Sciences integrates outcome-based learning objectives and a wealth of examples with assessment in an easy-to-use interface. Students are provided with rich digital…mehr
Andere Kunden interessierten sich auch für
- Jim Al-KhaliliLife on the Edge9,99 €
- Heather HeyingA Hunter Gatherer's Guide to the 21st Century12,99 €
- Leonard MlodinowThe Drunkard's Walk18,99 €
- Brian UptonThe Aesthetic of Play23,99 €
- Dave HaywardCambridge IGCSE(TM) Biology Study and Revision Guide19,99 €
- Rebecca SklootThe Immortal Life of Henrietta Lacks9,99 €
- Richard McElreath (Max Planck Institute for Evolutionary AnthropoloStatistical Rethinking77,99 €
-
-
-
Now available with Macmillan's ground-breaking online learning platform Achieve, The Practice of Statistics in the Life Sciences gives biology students an introduction to statistical practice all their own. It covers essential statistical topics with examples and exercises drawn from across the life sciences, including the fields of nursing, public health, and allied health. Achieve for The Practice of Statistics in the Life Sciences integrates outcome-based learning objectives and a wealth of examples with assessment in an easy-to-use interface. Students are provided with rich digital resources that solidify conceptual understanding, as well as homework problems with hints, answer-specific feedback, and a fully worked solution, designed to teach as they assess.
Produktdetails
- Produktdetails
- Verlag: Macmillan Learning
- Fourth Edition
- Seitenzahl: 768
- Erscheinungstermin: 1. Januar 1900
- Englisch
- Abmessung: 269mm x 220mm x 30mm
- Gewicht: 1480g
- ISBN-13: 9781319464431
- ISBN-10: 1319464432
- Artikelnr.: 63509531
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Macmillan Learning
- Fourth Edition
- Seitenzahl: 768
- Erscheinungstermin: 1. Januar 1900
- Englisch
- Abmessung: 269mm x 220mm x 30mm
- Gewicht: 1480g
- ISBN-13: 9781319464431
- ISBN-10: 1319464432
- Artikelnr.: 63509531
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Brigitte Baldi; David S. Moore
Part I: Collecting and Exploring Data
Chapter 1 Picturing Distributions with Graphs
Individuals and variables
Identifying categorical and quantitative variables
Categorical variables: pie charts and bar graphs
Quantitative variables: histograms
Interpreting histograms
Quantitative variables: dotplots
Time plots
Discussion: (Mis)adventures in data entry
Chapter 2 Describing Quantitative Distributions with Numbers
Measures of center: median, mean
Measures of spread: percentiles, standard deviation
Graphical displays of numerical summaries
Spotting suspected outliers*
Discussion: Dealing with outliers
Organizing a statistical problem
Chapter 3 Scatterplots and Correlation
Explanatory and response variables
Relationship between two quantitative variables: scatterplots
Adding categorical variables to scatterplots
Measuring linear association: correlation
Chapter 4 Regression
The least-squares regression line
Facts about least-squares regression
Outliers and influential observations
Working with logarithm transformations*
Cautions about correlation and regression
Association does not imply causation
Chapter 5 Two-Way Tables
Marginal distributions
Conditional distributions
Simpsons paradox
Chapter 6 Samples and Observational Studies
Observation versus experiment
Sampling
Sampling designs
Sample surveys
Cohorts and case-control studies
Chapter 7 Designing Experiments
Designing experiments
Randomized comparative experiments
Common experimental designs
Cautions about experimentation
Ethics in experimentation
Discussion: The Tuskegee syphilis study
Chapter 8 Collecting and Exploring Data: Part I Review
Part I Summary
Comprehensive Review Exercises
Large Dataset Exercises
Online Data Sources
EESEE Case Studies
Part II: From Chance to Inference
Chapter 9 Essential Probability Rules
The idea of probability
Probability models
Probability rules
Discrete versus continuous probability models
Random variables
Risk and odds*
Chapter 10 Independence and Conditional Probabilities*
Relationships among several events
Conditional probability
General probability rules
Tree diagrams
Bayess theorem
Discussion: Making sense of conditional probabilities in diagnostic tests
Chapter 11 The Normal Distributions
Normal distributions
The 68-95-99.7 rule
The standard Normal distribution
Finding Normal probabilities
Finding percentiles
Using the standard Normal table*
Normal quantile plots*
Chapter 12 Discrete Probability Distributions*
The binomial setting and binomial distributions
Binomial probabilities
Binomial mean and standard deviation
The Normal approximation to binomial distributions
The Poisson distributions
Poisson probabilities
Chapter 13 Sampling Distributions
Parameters and statistics
Statistical estimation and sampling distributions
The sampling distribution of the central limit theorem
The sampling distribution of the law of large numbers*
Chapter 14 Introduction to Inference
Statistical estimation
Margin of error and confidence level
Confidence intervals for the mean
Hypothesis testing P-value and statistical significance
Tests for a population mean
Tests from confidence intervals
Chapter 15 Inference in Practice
Conditions for inference in practice
How confidence intervals behave
How hypothesis tests behave
Discussion: The scientific approach
Planning studies: selecting an appropriate sample size
Chapter 16 From Chance to Inference: Part II Review
Part II Summary
Comprehensive Review Exercises
Advanced Topics (Optional Material)
Online Data Sources
EESEE Case Studies
Part III: Statistical Inference
Chapter 17 Inference about a Population Mean
Conditions for inference
The t distributions
The one-sample t confidence interval
The one-sample t test
Matched pairs t procedures
Robustness of t procedures
Chapter 18 Comparing Two Means
Comparing two population means
Two-sample t procedures
Robustness again
Avoid the pooled two-sample t procedures*
Avoid inference about standard deviations*
Chapter 19 Inference about a Population Proportion
The sample proportion
Large-sample confidence intervals for a proportion
Accurate confidence intervals for a proportion
Choosing the sample size*
Hypothesis tests for a proportion
Chapter 20 Comparing Two Proportions
Two-sample problems: proportions
The sampling distribution of a difference between proportions
Large-sample confidence intervals for comparing proportions
Accurate confidence intervals for comparing proportions
Hypothesis tests for comparing proportions
Relative risk and odds ratio*
Discussion: Assessing and understanding health risks
Chapter 21 The Chi-Square Test for Goodness of Fit
Hypotheses for goodness of fit
The chi-square test for goodness of fit
Interpreting chi-square results
Conditions for the chi-square test
The chi-square distributions
The chi-square test and the one-sample z test*
Chapter 22 The Chi-Square Test for Two-Way Tables
Two-way tables
The problem of multiple comparisons
Expected counts in two-way tables
The chi-square test
Conditions for the chi-square test
Uses of the chi-square test
Using a table of critical values*
The chi-square test and the two-sample z test*
Chapter 23 Inference for Regression
Conditions for regression inference
Estimating the parameters
Testing the hypothesis of no linear relationship
Testing lack of correlation*
Confidence intervals for the regression slope
Inference about prediction
Checking the conditions for inference
Chapter 24 One-Way Analysis of Variance: Comparing Several Means
Comparing several means
The analysis of variance F test
The idea of analysis of variance
Conditions for ANOVA F-distributions and degrees of freedom
The one-way ANOVA and the pooled two-sample t test*
Details of ANOVA calculations*
Chapter 25 Statistical Inference: Part III Review
Part III Summary
Review Exercises
Supplementary Exercises
EESEE Case Studies
Part IV: Optional Companion Chapters
Chapter 26 More about Analysis of Variance: Follow-up Tests and Two-Way
ANOVA
Beyond one-way ANOVA
Follow up analysis: Tukey's pairwise multiple comparisons
Follow up analysis: contrasts*
Two-way ANOVA: conditions, main effects, and interaction
Inference for two-way ANOVA
Some details of two-way ANOVA*
Chapter 27 Nonparametric Tests
Comparing two samples: the Wilcoxon rank sum test
Matched pairs: the Wilcoxon signed rank test
Comparing several samples: the Kruskal-Wallis test
Chapter 28 Multiple and Logistic Regression
Parallel regression lines
Estimating parameters
Conditions for inference
Inference for multiple regression
Interaction
A case study for multiple regression
Logistic regression
Inference for logistic regression
Notes and Data Sources
Tables
Answers to Selected Exercises
Some Data Sets Recurring Across Chapters
Index
Chapter 1 Picturing Distributions with Graphs
Individuals and variables
Identifying categorical and quantitative variables
Categorical variables: pie charts and bar graphs
Quantitative variables: histograms
Interpreting histograms
Quantitative variables: dotplots
Time plots
Discussion: (Mis)adventures in data entry
Chapter 2 Describing Quantitative Distributions with Numbers
Measures of center: median, mean
Measures of spread: percentiles, standard deviation
Graphical displays of numerical summaries
Spotting suspected outliers*
Discussion: Dealing with outliers
Organizing a statistical problem
Chapter 3 Scatterplots and Correlation
Explanatory and response variables
Relationship between two quantitative variables: scatterplots
Adding categorical variables to scatterplots
Measuring linear association: correlation
Chapter 4 Regression
The least-squares regression line
Facts about least-squares regression
Outliers and influential observations
Working with logarithm transformations*
Cautions about correlation and regression
Association does not imply causation
Chapter 5 Two-Way Tables
Marginal distributions
Conditional distributions
Simpsons paradox
Chapter 6 Samples and Observational Studies
Observation versus experiment
Sampling
Sampling designs
Sample surveys
Cohorts and case-control studies
Chapter 7 Designing Experiments
Designing experiments
Randomized comparative experiments
Common experimental designs
Cautions about experimentation
Ethics in experimentation
Discussion: The Tuskegee syphilis study
Chapter 8 Collecting and Exploring Data: Part I Review
Part I Summary
Comprehensive Review Exercises
Large Dataset Exercises
Online Data Sources
EESEE Case Studies
Part II: From Chance to Inference
Chapter 9 Essential Probability Rules
The idea of probability
Probability models
Probability rules
Discrete versus continuous probability models
Random variables
Risk and odds*
Chapter 10 Independence and Conditional Probabilities*
Relationships among several events
Conditional probability
General probability rules
Tree diagrams
Bayess theorem
Discussion: Making sense of conditional probabilities in diagnostic tests
Chapter 11 The Normal Distributions
Normal distributions
The 68-95-99.7 rule
The standard Normal distribution
Finding Normal probabilities
Finding percentiles
Using the standard Normal table*
Normal quantile plots*
Chapter 12 Discrete Probability Distributions*
The binomial setting and binomial distributions
Binomial probabilities
Binomial mean and standard deviation
The Normal approximation to binomial distributions
The Poisson distributions
Poisson probabilities
Chapter 13 Sampling Distributions
Parameters and statistics
Statistical estimation and sampling distributions
The sampling distribution of the central limit theorem
The sampling distribution of the law of large numbers*
Chapter 14 Introduction to Inference
Statistical estimation
Margin of error and confidence level
Confidence intervals for the mean
Hypothesis testing P-value and statistical significance
Tests for a population mean
Tests from confidence intervals
Chapter 15 Inference in Practice
Conditions for inference in practice
How confidence intervals behave
How hypothesis tests behave
Discussion: The scientific approach
Planning studies: selecting an appropriate sample size
Chapter 16 From Chance to Inference: Part II Review
Part II Summary
Comprehensive Review Exercises
Advanced Topics (Optional Material)
Online Data Sources
EESEE Case Studies
Part III: Statistical Inference
Chapter 17 Inference about a Population Mean
Conditions for inference
The t distributions
The one-sample t confidence interval
The one-sample t test
Matched pairs t procedures
Robustness of t procedures
Chapter 18 Comparing Two Means
Comparing two population means
Two-sample t procedures
Robustness again
Avoid the pooled two-sample t procedures*
Avoid inference about standard deviations*
Chapter 19 Inference about a Population Proportion
The sample proportion
Large-sample confidence intervals for a proportion
Accurate confidence intervals for a proportion
Choosing the sample size*
Hypothesis tests for a proportion
Chapter 20 Comparing Two Proportions
Two-sample problems: proportions
The sampling distribution of a difference between proportions
Large-sample confidence intervals for comparing proportions
Accurate confidence intervals for comparing proportions
Hypothesis tests for comparing proportions
Relative risk and odds ratio*
Discussion: Assessing and understanding health risks
Chapter 21 The Chi-Square Test for Goodness of Fit
Hypotheses for goodness of fit
The chi-square test for goodness of fit
Interpreting chi-square results
Conditions for the chi-square test
The chi-square distributions
The chi-square test and the one-sample z test*
Chapter 22 The Chi-Square Test for Two-Way Tables
Two-way tables
The problem of multiple comparisons
Expected counts in two-way tables
The chi-square test
Conditions for the chi-square test
Uses of the chi-square test
Using a table of critical values*
The chi-square test and the two-sample z test*
Chapter 23 Inference for Regression
Conditions for regression inference
Estimating the parameters
Testing the hypothesis of no linear relationship
Testing lack of correlation*
Confidence intervals for the regression slope
Inference about prediction
Checking the conditions for inference
Chapter 24 One-Way Analysis of Variance: Comparing Several Means
Comparing several means
The analysis of variance F test
The idea of analysis of variance
Conditions for ANOVA F-distributions and degrees of freedom
The one-way ANOVA and the pooled two-sample t test*
Details of ANOVA calculations*
Chapter 25 Statistical Inference: Part III Review
Part III Summary
Review Exercises
Supplementary Exercises
EESEE Case Studies
Part IV: Optional Companion Chapters
Chapter 26 More about Analysis of Variance: Follow-up Tests and Two-Way
ANOVA
Beyond one-way ANOVA
Follow up analysis: Tukey's pairwise multiple comparisons
Follow up analysis: contrasts*
Two-way ANOVA: conditions, main effects, and interaction
Inference for two-way ANOVA
Some details of two-way ANOVA*
Chapter 27 Nonparametric Tests
Comparing two samples: the Wilcoxon rank sum test
Matched pairs: the Wilcoxon signed rank test
Comparing several samples: the Kruskal-Wallis test
Chapter 28 Multiple and Logistic Regression
Parallel regression lines
Estimating parameters
Conditions for inference
Inference for multiple regression
Interaction
A case study for multiple regression
Logistic regression
Inference for logistic regression
Notes and Data Sources
Tables
Answers to Selected Exercises
Some Data Sets Recurring Across Chapters
Index
Part I: Collecting and Exploring Data
Chapter 1 Picturing Distributions with Graphs
Individuals and variables
Identifying categorical and quantitative variables
Categorical variables: pie charts and bar graphs
Quantitative variables: histograms
Interpreting histograms
Quantitative variables: dotplots
Time plots
Discussion: (Mis)adventures in data entry
Chapter 2 Describing Quantitative Distributions with Numbers
Measures of center: median, mean
Measures of spread: percentiles, standard deviation
Graphical displays of numerical summaries
Spotting suspected outliers*
Discussion: Dealing with outliers
Organizing a statistical problem
Chapter 3 Scatterplots and Correlation
Explanatory and response variables
Relationship between two quantitative variables: scatterplots
Adding categorical variables to scatterplots
Measuring linear association: correlation
Chapter 4 Regression
The least-squares regression line
Facts about least-squares regression
Outliers and influential observations
Working with logarithm transformations*
Cautions about correlation and regression
Association does not imply causation
Chapter 5 Two-Way Tables
Marginal distributions
Conditional distributions
Simpsons paradox
Chapter 6 Samples and Observational Studies
Observation versus experiment
Sampling
Sampling designs
Sample surveys
Cohorts and case-control studies
Chapter 7 Designing Experiments
Designing experiments
Randomized comparative experiments
Common experimental designs
Cautions about experimentation
Ethics in experimentation
Discussion: The Tuskegee syphilis study
Chapter 8 Collecting and Exploring Data: Part I Review
Part I Summary
Comprehensive Review Exercises
Large Dataset Exercises
Online Data Sources
EESEE Case Studies
Part II: From Chance to Inference
Chapter 9 Essential Probability Rules
The idea of probability
Probability models
Probability rules
Discrete versus continuous probability models
Random variables
Risk and odds*
Chapter 10 Independence and Conditional Probabilities*
Relationships among several events
Conditional probability
General probability rules
Tree diagrams
Bayess theorem
Discussion: Making sense of conditional probabilities in diagnostic tests
Chapter 11 The Normal Distributions
Normal distributions
The 68-95-99.7 rule
The standard Normal distribution
Finding Normal probabilities
Finding percentiles
Using the standard Normal table*
Normal quantile plots*
Chapter 12 Discrete Probability Distributions*
The binomial setting and binomial distributions
Binomial probabilities
Binomial mean and standard deviation
The Normal approximation to binomial distributions
The Poisson distributions
Poisson probabilities
Chapter 13 Sampling Distributions
Parameters and statistics
Statistical estimation and sampling distributions
The sampling distribution of the central limit theorem
The sampling distribution of the law of large numbers*
Chapter 14 Introduction to Inference
Statistical estimation
Margin of error and confidence level
Confidence intervals for the mean
Hypothesis testing P-value and statistical significance
Tests for a population mean
Tests from confidence intervals
Chapter 15 Inference in Practice
Conditions for inference in practice
How confidence intervals behave
How hypothesis tests behave
Discussion: The scientific approach
Planning studies: selecting an appropriate sample size
Chapter 16 From Chance to Inference: Part II Review
Part II Summary
Comprehensive Review Exercises
Advanced Topics (Optional Material)
Online Data Sources
EESEE Case Studies
Part III: Statistical Inference
Chapter 17 Inference about a Population Mean
Conditions for inference
The t distributions
The one-sample t confidence interval
The one-sample t test
Matched pairs t procedures
Robustness of t procedures
Chapter 18 Comparing Two Means
Comparing two population means
Two-sample t procedures
Robustness again
Avoid the pooled two-sample t procedures*
Avoid inference about standard deviations*
Chapter 19 Inference about a Population Proportion
The sample proportion
Large-sample confidence intervals for a proportion
Accurate confidence intervals for a proportion
Choosing the sample size*
Hypothesis tests for a proportion
Chapter 20 Comparing Two Proportions
Two-sample problems: proportions
The sampling distribution of a difference between proportions
Large-sample confidence intervals for comparing proportions
Accurate confidence intervals for comparing proportions
Hypothesis tests for comparing proportions
Relative risk and odds ratio*
Discussion: Assessing and understanding health risks
Chapter 21 The Chi-Square Test for Goodness of Fit
Hypotheses for goodness of fit
The chi-square test for goodness of fit
Interpreting chi-square results
Conditions for the chi-square test
The chi-square distributions
The chi-square test and the one-sample z test*
Chapter 22 The Chi-Square Test for Two-Way Tables
Two-way tables
The problem of multiple comparisons
Expected counts in two-way tables
The chi-square test
Conditions for the chi-square test
Uses of the chi-square test
Using a table of critical values*
The chi-square test and the two-sample z test*
Chapter 23 Inference for Regression
Conditions for regression inference
Estimating the parameters
Testing the hypothesis of no linear relationship
Testing lack of correlation*
Confidence intervals for the regression slope
Inference about prediction
Checking the conditions for inference
Chapter 24 One-Way Analysis of Variance: Comparing Several Means
Comparing several means
The analysis of variance F test
The idea of analysis of variance
Conditions for ANOVA F-distributions and degrees of freedom
The one-way ANOVA and the pooled two-sample t test*
Details of ANOVA calculations*
Chapter 25 Statistical Inference: Part III Review
Part III Summary
Review Exercises
Supplementary Exercises
EESEE Case Studies
Part IV: Optional Companion Chapters
Chapter 26 More about Analysis of Variance: Follow-up Tests and Two-Way
ANOVA
Beyond one-way ANOVA
Follow up analysis: Tukey's pairwise multiple comparisons
Follow up analysis: contrasts*
Two-way ANOVA: conditions, main effects, and interaction
Inference for two-way ANOVA
Some details of two-way ANOVA*
Chapter 27 Nonparametric Tests
Comparing two samples: the Wilcoxon rank sum test
Matched pairs: the Wilcoxon signed rank test
Comparing several samples: the Kruskal-Wallis test
Chapter 28 Multiple and Logistic Regression
Parallel regression lines
Estimating parameters
Conditions for inference
Inference for multiple regression
Interaction
A case study for multiple regression
Logistic regression
Inference for logistic regression
Notes and Data Sources
Tables
Answers to Selected Exercises
Some Data Sets Recurring Across Chapters
Index
Chapter 1 Picturing Distributions with Graphs
Individuals and variables
Identifying categorical and quantitative variables
Categorical variables: pie charts and bar graphs
Quantitative variables: histograms
Interpreting histograms
Quantitative variables: dotplots
Time plots
Discussion: (Mis)adventures in data entry
Chapter 2 Describing Quantitative Distributions with Numbers
Measures of center: median, mean
Measures of spread: percentiles, standard deviation
Graphical displays of numerical summaries
Spotting suspected outliers*
Discussion: Dealing with outliers
Organizing a statistical problem
Chapter 3 Scatterplots and Correlation
Explanatory and response variables
Relationship between two quantitative variables: scatterplots
Adding categorical variables to scatterplots
Measuring linear association: correlation
Chapter 4 Regression
The least-squares regression line
Facts about least-squares regression
Outliers and influential observations
Working with logarithm transformations*
Cautions about correlation and regression
Association does not imply causation
Chapter 5 Two-Way Tables
Marginal distributions
Conditional distributions
Simpsons paradox
Chapter 6 Samples and Observational Studies
Observation versus experiment
Sampling
Sampling designs
Sample surveys
Cohorts and case-control studies
Chapter 7 Designing Experiments
Designing experiments
Randomized comparative experiments
Common experimental designs
Cautions about experimentation
Ethics in experimentation
Discussion: The Tuskegee syphilis study
Chapter 8 Collecting and Exploring Data: Part I Review
Part I Summary
Comprehensive Review Exercises
Large Dataset Exercises
Online Data Sources
EESEE Case Studies
Part II: From Chance to Inference
Chapter 9 Essential Probability Rules
The idea of probability
Probability models
Probability rules
Discrete versus continuous probability models
Random variables
Risk and odds*
Chapter 10 Independence and Conditional Probabilities*
Relationships among several events
Conditional probability
General probability rules
Tree diagrams
Bayess theorem
Discussion: Making sense of conditional probabilities in diagnostic tests
Chapter 11 The Normal Distributions
Normal distributions
The 68-95-99.7 rule
The standard Normal distribution
Finding Normal probabilities
Finding percentiles
Using the standard Normal table*
Normal quantile plots*
Chapter 12 Discrete Probability Distributions*
The binomial setting and binomial distributions
Binomial probabilities
Binomial mean and standard deviation
The Normal approximation to binomial distributions
The Poisson distributions
Poisson probabilities
Chapter 13 Sampling Distributions
Parameters and statistics
Statistical estimation and sampling distributions
The sampling distribution of the central limit theorem
The sampling distribution of the law of large numbers*
Chapter 14 Introduction to Inference
Statistical estimation
Margin of error and confidence level
Confidence intervals for the mean
Hypothesis testing P-value and statistical significance
Tests for a population mean
Tests from confidence intervals
Chapter 15 Inference in Practice
Conditions for inference in practice
How confidence intervals behave
How hypothesis tests behave
Discussion: The scientific approach
Planning studies: selecting an appropriate sample size
Chapter 16 From Chance to Inference: Part II Review
Part II Summary
Comprehensive Review Exercises
Advanced Topics (Optional Material)
Online Data Sources
EESEE Case Studies
Part III: Statistical Inference
Chapter 17 Inference about a Population Mean
Conditions for inference
The t distributions
The one-sample t confidence interval
The one-sample t test
Matched pairs t procedures
Robustness of t procedures
Chapter 18 Comparing Two Means
Comparing two population means
Two-sample t procedures
Robustness again
Avoid the pooled two-sample t procedures*
Avoid inference about standard deviations*
Chapter 19 Inference about a Population Proportion
The sample proportion
Large-sample confidence intervals for a proportion
Accurate confidence intervals for a proportion
Choosing the sample size*
Hypothesis tests for a proportion
Chapter 20 Comparing Two Proportions
Two-sample problems: proportions
The sampling distribution of a difference between proportions
Large-sample confidence intervals for comparing proportions
Accurate confidence intervals for comparing proportions
Hypothesis tests for comparing proportions
Relative risk and odds ratio*
Discussion: Assessing and understanding health risks
Chapter 21 The Chi-Square Test for Goodness of Fit
Hypotheses for goodness of fit
The chi-square test for goodness of fit
Interpreting chi-square results
Conditions for the chi-square test
The chi-square distributions
The chi-square test and the one-sample z test*
Chapter 22 The Chi-Square Test for Two-Way Tables
Two-way tables
The problem of multiple comparisons
Expected counts in two-way tables
The chi-square test
Conditions for the chi-square test
Uses of the chi-square test
Using a table of critical values*
The chi-square test and the two-sample z test*
Chapter 23 Inference for Regression
Conditions for regression inference
Estimating the parameters
Testing the hypothesis of no linear relationship
Testing lack of correlation*
Confidence intervals for the regression slope
Inference about prediction
Checking the conditions for inference
Chapter 24 One-Way Analysis of Variance: Comparing Several Means
Comparing several means
The analysis of variance F test
The idea of analysis of variance
Conditions for ANOVA F-distributions and degrees of freedom
The one-way ANOVA and the pooled two-sample t test*
Details of ANOVA calculations*
Chapter 25 Statistical Inference: Part III Review
Part III Summary
Review Exercises
Supplementary Exercises
EESEE Case Studies
Part IV: Optional Companion Chapters
Chapter 26 More about Analysis of Variance: Follow-up Tests and Two-Way
ANOVA
Beyond one-way ANOVA
Follow up analysis: Tukey's pairwise multiple comparisons
Follow up analysis: contrasts*
Two-way ANOVA: conditions, main effects, and interaction
Inference for two-way ANOVA
Some details of two-way ANOVA*
Chapter 27 Nonparametric Tests
Comparing two samples: the Wilcoxon rank sum test
Matched pairs: the Wilcoxon signed rank test
Comparing several samples: the Kruskal-Wallis test
Chapter 28 Multiple and Logistic Regression
Parallel regression lines
Estimating parameters
Conditions for inference
Inference for multiple regression
Interaction
A case study for multiple regression
Logistic regression
Inference for logistic regression
Notes and Data Sources
Tables
Answers to Selected Exercises
Some Data Sets Recurring Across Chapters
Index