
Partial orders on a C-algebra
Versandkostenfrei!
Versandfertig in 1-2 Wochen
41,99 €
inkl. MwSt.
PAYBACK Punkte
21 °P sammeln!
The study different partial orders on a C-algebra and their properties. First we define a partial ordering on C-algebra by x ¿ y if and only if y ¿ x = x and we study the properties of this partial ordering. We give a number of equivalent conditions in terms of this partial ordering for a C-algebra to become a Boolean Algebra. Using the decomposition theorem we prove that for any a, b ¿ B(A) with a ¿ b = F, Aa is isomorphic to Ab if and only if there exists an isomorphism on A which sends a to b. We define two binary operations ¿ and ¿ on a C-algebra A and prove that < A, ¿ >and < A, ¿...
The study different partial orders on a C-algebra and their properties. First we define a partial ordering on C-algebra by x ¿ y if and only if y ¿ x = x and we study the properties of this partial ordering. We give a number of equivalent conditions in terms of this partial ordering for a C-algebra to become a Boolean Algebra. Using the decomposition theorem we prove that for any a, b ¿ B(A) with a ¿ b = F, Aa is isomorphic to Ab if and only if there exists an isomorphism on A which sends a to b. We define two binary operations ¿ and ¿ on a C-algebra A and prove that < A, ¿ >and < A, ¿ > are semi lattices. We derive some properties of the partial orderings ¿¿and ¿¿ induced from the semilattices.