Multitemporal Earth Observation Image Analysis
Remote Sensing Image Sequences
Herausgeber: Mallet, Clément; Chehata, Nesrine
Multitemporal Earth Observation Image Analysis
Remote Sensing Image Sequences
Herausgeber: Mallet, Clément; Chehata, Nesrine
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Earth observation has witnessed a unique paradigm change in the last decade with a diverse and ever-growing number of data sources. Among them, time series of remote sensing images has proven to be invaluable for numerous environmental and climate studies. Multitemporal Earth Observation Image Analysis provides illustrations of recent methodological advances in data processing and information extraction from imagery, with an emphasis on the temporal dimension uncovered either by recent satellite constellations (in particular the Sentinels from the European Copernicus programme) or archival…mehr
Andere Kunden interessierten sich auch für
- Heiko BalzterEarth Observation for Land and Emergency Monitoring103,99 €
- Jian Guo LiuImage Processing and GIS for Remote Sensing112,99 €
- Remote Sensing and Image Interpretation136,99 €
- Mohammad Kamal Ghassem-AlaskariAnalysis and Interpretation of Image Logs57,99 €
- Rebekah B. EsmailiEarth Observation Using Python169,99 €
- Earth Observation in Forest Biophysical/Biochemical Parameter Retrieval79,99 €
- Earth Observation (EO), Remote Sensing (RS), and Geoinformation (GI) Applications in Svalbard151,99 €
-
-
-
Earth observation has witnessed a unique paradigm change in the last decade with a diverse and ever-growing number of data sources. Among them, time series of remote sensing images has proven to be invaluable for numerous environmental and climate studies. Multitemporal Earth Observation Image Analysis provides illustrations of recent methodological advances in data processing and information extraction from imagery, with an emphasis on the temporal dimension uncovered either by recent satellite constellations (in particular the Sentinels from the European Copernicus programme) or archival aerial images available in national archives. The book shows how complementary data sources can be efficiently used, how spatial and temporal information can be leveraged for biophysical parameter estimation, classification of land surfaces and object tracking, as well as how standard machine learning and state-of-the-art deep learning solutions can solve complex problems with real-world applications.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 272
- Erscheinungstermin: 20. August 2024
- Englisch
- Abmessung: 234mm x 156mm x 16mm
- Gewicht: 558g
- ISBN-13: 9781789451764
- ISBN-10: 1789451760
- Artikelnr.: 71159654
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 272
- Erscheinungstermin: 20. August 2024
- Englisch
- Abmessung: 234mm x 156mm x 16mm
- Gewicht: 558g
- ISBN-13: 9781789451764
- ISBN-10: 1789451760
- Artikelnr.: 71159654
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Clément Mallet is a senior scientist in remote sensing for land-cover mapping issues at the LaSTIG Laboratory (Gustave Eiffel University, IGN, French Mapping Agency), France. He is also Editor-in-Chief of the ISPRS Journal of Photogrammetry and Remote Sensing. Nesrine Chehata is a senior lecturer in geomatics and AI for Earth observation at ENSEGID-Bordeaux INP, France. She is also President and Co-founder of AGEOS (African Association for Geospatial Development), President of FNAACC (National Forum of Climate Change Adaptation Actors in Tunisia) and an IEEE GRSS senior member.
Foreword xi
Francesca BOVOLO
Chapter 1. Broader Application of the Time-SIFT Method: Proof-of-Concept of
3-D-Monitoring Study Cases with Various Spatiotemporal Scales 1
Denis FEURER, Sean BEMIS, Guillaume COULOUMA, Hatem MABROUK, Sylvain
MASSUEL, Romina Vanessa BARBOSA, Yoann THOMAS, Jérôme AMMANN and Fabrice
VINATIER
1.1. Introduction 1
1.2. The Time-SIFT method 4
1.3. Case studies 8
1.4. Conclusion 34
1.5. References 35
Chapter 2. Hierarchical Crop Mapping from Satellite Image Sequences with
Recurrent Neural Networks 41
Mehmet OZGUR TURKOGLU, Stefano D'ARONCO, Konrad SCHINDLER and Jan Dirk
WEGNER
2.1. Introduction 41
2.2. Literature 44
2.3. Background: sequence modeling with recurrent neural networks 49
2.4. Hierarchical multi-stage convolutional recurrent network 54
2.5. Experiment 57
2.6. Summary and future outlook 69
2.7. References 72
Chapter 3. Exploiting Multitemporal Multispectral High-resolution Satellite
Data toward Annual Land Cover and Crop Type Mapping: A Case Study in Greece
81
Christina KARAKIZI, Konstantinos KARANTZALOS and Zacharias KANDYLAKIS
3.1. Introduction 81
3.2. From raw data to analysis ready datasets 83
3.3. Classification and mapping 96
3.4. Data handling and computational challenges 110
3.5. Conclusions 112
3.6. Acknowledgments 114
3.7. References 114
Chapter 4. Irrigation Monitoring Using High Spatial and Temporal
Resolutions Remote Sensing Time Series 123
Hassan BAZZI and Nicolas BAGHDADI
4.1. Introduction 123
4.2. Fundamentals behind remote sensing for irrigation mapping 125
4.3. New methodologies for irrigation mapping using S1 and S2 time series
131
4.4. Limits and perspectives 142
4.5. Conclusions 145
4.6. References 146
Chapter 5. Trends in Satellite Time Series Processing for Vegetation
Phenology Monitoring 151
Santiago BELDA, Luca PIPIA and Jochem VERRELST
5.1. Introduction 152
5.2. Time series processing for gap filling 154
5.3. Time series processing for phenology indicators estimation 161
5.4. Fusion of time series products for improved gap filling 163
5.5. Time series processing toolbox: DATimeS 170
5.6. Discussion 173
5.7. Conclusions 176
5.8. Acknowledgments 177
5.9. References 177
Chapter 6. Data-Driven Spatio-Temporal Interpolation for Satellite-Derived
Geophysical Tracers 185
Maxime BEAUCHAMP and Ronan FABLET
6.1. Notations 185
6.2. Introduction 186
6.3. Data assimilation 188
6.4. Data-driven methods 196
6.5. Application to satellite-derived ocean surface topography datasets 210
6.6. Conclusion and discussion 216
6.7. References 218
Chapter 7. Recent Advances in Tropical Cyclone Forecasting Using Machine
Learning on Reanalysis and Remote Sensing 223
Sophie GIFFARD-ROISIN
7.1. Background 224
7.2. Handling spatiotemporal data for TC forecasting 229
7.3. Application 1: intensity forecasting from spatiotemporal reanalysis, a
hackathon experiment 231
7.4. Application 2: trajectory forecasting using fused deep learning 236
7.5. Applications using recurrent neural networks-convolutional neural
networks 242
7.6. Applications using remote sensing data 246
7.7. Conclusion, current limitations and open problems 247
7.8. References 248
List of Authors 253
Index 257
Francesca BOVOLO
Chapter 1. Broader Application of the Time-SIFT Method: Proof-of-Concept of
3-D-Monitoring Study Cases with Various Spatiotemporal Scales 1
Denis FEURER, Sean BEMIS, Guillaume COULOUMA, Hatem MABROUK, Sylvain
MASSUEL, Romina Vanessa BARBOSA, Yoann THOMAS, Jérôme AMMANN and Fabrice
VINATIER
1.1. Introduction 1
1.2. The Time-SIFT method 4
1.3. Case studies 8
1.4. Conclusion 34
1.5. References 35
Chapter 2. Hierarchical Crop Mapping from Satellite Image Sequences with
Recurrent Neural Networks 41
Mehmet OZGUR TURKOGLU, Stefano D'ARONCO, Konrad SCHINDLER and Jan Dirk
WEGNER
2.1. Introduction 41
2.2. Literature 44
2.3. Background: sequence modeling with recurrent neural networks 49
2.4. Hierarchical multi-stage convolutional recurrent network 54
2.5. Experiment 57
2.6. Summary and future outlook 69
2.7. References 72
Chapter 3. Exploiting Multitemporal Multispectral High-resolution Satellite
Data toward Annual Land Cover and Crop Type Mapping: A Case Study in Greece
81
Christina KARAKIZI, Konstantinos KARANTZALOS and Zacharias KANDYLAKIS
3.1. Introduction 81
3.2. From raw data to analysis ready datasets 83
3.3. Classification and mapping 96
3.4. Data handling and computational challenges 110
3.5. Conclusions 112
3.6. Acknowledgments 114
3.7. References 114
Chapter 4. Irrigation Monitoring Using High Spatial and Temporal
Resolutions Remote Sensing Time Series 123
Hassan BAZZI and Nicolas BAGHDADI
4.1. Introduction 123
4.2. Fundamentals behind remote sensing for irrigation mapping 125
4.3. New methodologies for irrigation mapping using S1 and S2 time series
131
4.4. Limits and perspectives 142
4.5. Conclusions 145
4.6. References 146
Chapter 5. Trends in Satellite Time Series Processing for Vegetation
Phenology Monitoring 151
Santiago BELDA, Luca PIPIA and Jochem VERRELST
5.1. Introduction 152
5.2. Time series processing for gap filling 154
5.3. Time series processing for phenology indicators estimation 161
5.4. Fusion of time series products for improved gap filling 163
5.5. Time series processing toolbox: DATimeS 170
5.6. Discussion 173
5.7. Conclusions 176
5.8. Acknowledgments 177
5.9. References 177
Chapter 6. Data-Driven Spatio-Temporal Interpolation for Satellite-Derived
Geophysical Tracers 185
Maxime BEAUCHAMP and Ronan FABLET
6.1. Notations 185
6.2. Introduction 186
6.3. Data assimilation 188
6.4. Data-driven methods 196
6.5. Application to satellite-derived ocean surface topography datasets 210
6.6. Conclusion and discussion 216
6.7. References 218
Chapter 7. Recent Advances in Tropical Cyclone Forecasting Using Machine
Learning on Reanalysis and Remote Sensing 223
Sophie GIFFARD-ROISIN
7.1. Background 224
7.2. Handling spatiotemporal data for TC forecasting 229
7.3. Application 1: intensity forecasting from spatiotemporal reanalysis, a
hackathon experiment 231
7.4. Application 2: trajectory forecasting using fused deep learning 236
7.5. Applications using recurrent neural networks-convolutional neural
networks 242
7.6. Applications using remote sensing data 246
7.7. Conclusion, current limitations and open problems 247
7.8. References 248
List of Authors 253
Index 257
Foreword xi
Francesca BOVOLO
Chapter 1. Broader Application of the Time-SIFT Method: Proof-of-Concept of
3-D-Monitoring Study Cases with Various Spatiotemporal Scales 1
Denis FEURER, Sean BEMIS, Guillaume COULOUMA, Hatem MABROUK, Sylvain
MASSUEL, Romina Vanessa BARBOSA, Yoann THOMAS, Jérôme AMMANN and Fabrice
VINATIER
1.1. Introduction 1
1.2. The Time-SIFT method 4
1.3. Case studies 8
1.4. Conclusion 34
1.5. References 35
Chapter 2. Hierarchical Crop Mapping from Satellite Image Sequences with
Recurrent Neural Networks 41
Mehmet OZGUR TURKOGLU, Stefano D'ARONCO, Konrad SCHINDLER and Jan Dirk
WEGNER
2.1. Introduction 41
2.2. Literature 44
2.3. Background: sequence modeling with recurrent neural networks 49
2.4. Hierarchical multi-stage convolutional recurrent network 54
2.5. Experiment 57
2.6. Summary and future outlook 69
2.7. References 72
Chapter 3. Exploiting Multitemporal Multispectral High-resolution Satellite
Data toward Annual Land Cover and Crop Type Mapping: A Case Study in Greece
81
Christina KARAKIZI, Konstantinos KARANTZALOS and Zacharias KANDYLAKIS
3.1. Introduction 81
3.2. From raw data to analysis ready datasets 83
3.3. Classification and mapping 96
3.4. Data handling and computational challenges 110
3.5. Conclusions 112
3.6. Acknowledgments 114
3.7. References 114
Chapter 4. Irrigation Monitoring Using High Spatial and Temporal
Resolutions Remote Sensing Time Series 123
Hassan BAZZI and Nicolas BAGHDADI
4.1. Introduction 123
4.2. Fundamentals behind remote sensing for irrigation mapping 125
4.3. New methodologies for irrigation mapping using S1 and S2 time series
131
4.4. Limits and perspectives 142
4.5. Conclusions 145
4.6. References 146
Chapter 5. Trends in Satellite Time Series Processing for Vegetation
Phenology Monitoring 151
Santiago BELDA, Luca PIPIA and Jochem VERRELST
5.1. Introduction 152
5.2. Time series processing for gap filling 154
5.3. Time series processing for phenology indicators estimation 161
5.4. Fusion of time series products for improved gap filling 163
5.5. Time series processing toolbox: DATimeS 170
5.6. Discussion 173
5.7. Conclusions 176
5.8. Acknowledgments 177
5.9. References 177
Chapter 6. Data-Driven Spatio-Temporal Interpolation for Satellite-Derived
Geophysical Tracers 185
Maxime BEAUCHAMP and Ronan FABLET
6.1. Notations 185
6.2. Introduction 186
6.3. Data assimilation 188
6.4. Data-driven methods 196
6.5. Application to satellite-derived ocean surface topography datasets 210
6.6. Conclusion and discussion 216
6.7. References 218
Chapter 7. Recent Advances in Tropical Cyclone Forecasting Using Machine
Learning on Reanalysis and Remote Sensing 223
Sophie GIFFARD-ROISIN
7.1. Background 224
7.2. Handling spatiotemporal data for TC forecasting 229
7.3. Application 1: intensity forecasting from spatiotemporal reanalysis, a
hackathon experiment 231
7.4. Application 2: trajectory forecasting using fused deep learning 236
7.5. Applications using recurrent neural networks-convolutional neural
networks 242
7.6. Applications using remote sensing data 246
7.7. Conclusion, current limitations and open problems 247
7.8. References 248
List of Authors 253
Index 257
Francesca BOVOLO
Chapter 1. Broader Application of the Time-SIFT Method: Proof-of-Concept of
3-D-Monitoring Study Cases with Various Spatiotemporal Scales 1
Denis FEURER, Sean BEMIS, Guillaume COULOUMA, Hatem MABROUK, Sylvain
MASSUEL, Romina Vanessa BARBOSA, Yoann THOMAS, Jérôme AMMANN and Fabrice
VINATIER
1.1. Introduction 1
1.2. The Time-SIFT method 4
1.3. Case studies 8
1.4. Conclusion 34
1.5. References 35
Chapter 2. Hierarchical Crop Mapping from Satellite Image Sequences with
Recurrent Neural Networks 41
Mehmet OZGUR TURKOGLU, Stefano D'ARONCO, Konrad SCHINDLER and Jan Dirk
WEGNER
2.1. Introduction 41
2.2. Literature 44
2.3. Background: sequence modeling with recurrent neural networks 49
2.4. Hierarchical multi-stage convolutional recurrent network 54
2.5. Experiment 57
2.6. Summary and future outlook 69
2.7. References 72
Chapter 3. Exploiting Multitemporal Multispectral High-resolution Satellite
Data toward Annual Land Cover and Crop Type Mapping: A Case Study in Greece
81
Christina KARAKIZI, Konstantinos KARANTZALOS and Zacharias KANDYLAKIS
3.1. Introduction 81
3.2. From raw data to analysis ready datasets 83
3.3. Classification and mapping 96
3.4. Data handling and computational challenges 110
3.5. Conclusions 112
3.6. Acknowledgments 114
3.7. References 114
Chapter 4. Irrigation Monitoring Using High Spatial and Temporal
Resolutions Remote Sensing Time Series 123
Hassan BAZZI and Nicolas BAGHDADI
4.1. Introduction 123
4.2. Fundamentals behind remote sensing for irrigation mapping 125
4.3. New methodologies for irrigation mapping using S1 and S2 time series
131
4.4. Limits and perspectives 142
4.5. Conclusions 145
4.6. References 146
Chapter 5. Trends in Satellite Time Series Processing for Vegetation
Phenology Monitoring 151
Santiago BELDA, Luca PIPIA and Jochem VERRELST
5.1. Introduction 152
5.2. Time series processing for gap filling 154
5.3. Time series processing for phenology indicators estimation 161
5.4. Fusion of time series products for improved gap filling 163
5.5. Time series processing toolbox: DATimeS 170
5.6. Discussion 173
5.7. Conclusions 176
5.8. Acknowledgments 177
5.9. References 177
Chapter 6. Data-Driven Spatio-Temporal Interpolation for Satellite-Derived
Geophysical Tracers 185
Maxime BEAUCHAMP and Ronan FABLET
6.1. Notations 185
6.2. Introduction 186
6.3. Data assimilation 188
6.4. Data-driven methods 196
6.5. Application to satellite-derived ocean surface topography datasets 210
6.6. Conclusion and discussion 216
6.7. References 218
Chapter 7. Recent Advances in Tropical Cyclone Forecasting Using Machine
Learning on Reanalysis and Remote Sensing 223
Sophie GIFFARD-ROISIN
7.1. Background 224
7.2. Handling spatiotemporal data for TC forecasting 229
7.3. Application 1: intensity forecasting from spatiotemporal reanalysis, a
hackathon experiment 231
7.4. Application 2: trajectory forecasting using fused deep learning 236
7.5. Applications using recurrent neural networks-convolutional neural
networks 242
7.6. Applications using remote sensing data 246
7.7. Conclusion, current limitations and open problems 247
7.8. References 248
List of Authors 253
Index 257