Yuri Makeenko
Methods of Contemporary Gauge Theory
Yuri Makeenko
Methods of Contemporary Gauge Theory
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This 2002 book is a thorough introduction to quantum theory of gauge fields, with emphasis on modern non-perturbative methods.
Andere Kunden interessierten sich auch für
- Jorge Casalderrey-SolanaGauge/String Duality, Hot QCD and Heavy Ion Collisions151,99 €
- B. BunkLattice Gauge Theory39,99 €
- Jan SmitIntroduction to Quantum Fields on a Lattice119,99 €
- Contemporary Problems in Mathematical Physics - Proceedings of the First International Workshop158,99 €
- Contemporary Problems in Mathematical Physics - Proceedings of the Second International Workshop176,99 €
- Moshe CarmeliClassical Fields: General Relativity and Gauge Theory132,99 €
- Contemporary Problems in Mathematical Physics238,99 €
-
-
-
This 2002 book is a thorough introduction to quantum theory of gauge fields, with emphasis on modern non-perturbative methods.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 430
- Erscheinungstermin: 27. Juli 2023
- Englisch
- Abmessung: 244mm x 170mm x 24mm
- Gewicht: 880g
- ISBN-13: 9781009402057
- ISBN-10: 1009402056
- Artikelnr.: 68319024
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 430
- Erscheinungstermin: 27. Juli 2023
- Englisch
- Abmessung: 244mm x 170mm x 24mm
- Gewicht: 880g
- ISBN-13: 9781009402057
- ISBN-10: 1009402056
- Artikelnr.: 68319024
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Yuri Makeenko received his PhD in theoretical and mathematical physics from the Institute of Theoretical and Experimental Physics (ITEP), Moscow. He has been a staff member at ITEP since 1983, and since 1993 has been a visiting professor at the Niels Bohr Institute, Copenhagen. He has given lecture courses at universities throughout Europe and has published numerous papers and review articles. Professor Makeenko has been working on non-perturbative quantum field theory since 1975. His research has covered four-dimensional conformal field theories and the 1/N-expansion of QCD, where he derived in 1979 an equation presently known as the Makeenko-Migdal equation or the 'loop equation', in collaboration with A.A. Migdal. In the early 1980s he explored lattice gauge theories, including the Monte Carlo simulations, and went on to work on matrix models and string theory in the 1990s. His subsequent work has focused on matrix theory and non-commutative gauge theories.
Preface
Part I. Path Integrals: 1. Operator calculus
2. Second quantization
3. Quantum anomalies from path integral
4. Instantons in quantum mechanics
Part II. Lattice Gauge Theories: 5. Observables in gauge theories
6. Gauge fields on a lattice
7. Lattice methods
8. Fermions on a lattice
9. Finite temperatures
Part III. 1/N Expansion: 10. O(N) vector models
11. Multicolor QCD
12. QCD in loop space
13. Matrix models
Part IV. Reduced Models: 14. Eguchi-Kawai model
15. Twisted reduced models
16. Non-commutative gauge theories.
Part I. Path Integrals: 1. Operator calculus
2. Second quantization
3. Quantum anomalies from path integral
4. Instantons in quantum mechanics
Part II. Lattice Gauge Theories: 5. Observables in gauge theories
6. Gauge fields on a lattice
7. Lattice methods
8. Fermions on a lattice
9. Finite temperatures
Part III. 1/N Expansion: 10. O(N) vector models
11. Multicolor QCD
12. QCD in loop space
13. Matrix models
Part IV. Reduced Models: 14. Eguchi-Kawai model
15. Twisted reduced models
16. Non-commutative gauge theories.
Preface
Part I. Path Integrals: 1. Operator calculus
2. Second quantization
3. Quantum anomalies from path integral
4. Instantons in quantum mechanics
Part II. Lattice Gauge Theories: 5. Observables in gauge theories
6. Gauge fields on a lattice
7. Lattice methods
8. Fermions on a lattice
9. Finite temperatures
Part III. 1/N Expansion: 10. O(N) vector models
11. Multicolor QCD
12. QCD in loop space
13. Matrix models
Part IV. Reduced Models: 14. Eguchi-Kawai model
15. Twisted reduced models
16. Non-commutative gauge theories.
Part I. Path Integrals: 1. Operator calculus
2. Second quantization
3. Quantum anomalies from path integral
4. Instantons in quantum mechanics
Part II. Lattice Gauge Theories: 5. Observables in gauge theories
6. Gauge fields on a lattice
7. Lattice methods
8. Fermions on a lattice
9. Finite temperatures
Part III. 1/N Expansion: 10. O(N) vector models
11. Multicolor QCD
12. QCD in loop space
13. Matrix models
Part IV. Reduced Models: 14. Eguchi-Kawai model
15. Twisted reduced models
16. Non-commutative gauge theories.