Maximum Entropy and Bayesian Methods Santa Barbara, California, U.S.A., 1993
Herausgegeben:Heidbreder, Glenn R.
Maximum Entropy and Bayesian Methods Santa Barbara, California, U.S.A., 1993
Herausgegeben:Heidbreder, Glenn R.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Maximum entropy and Bayesian methods have fundamental, central roles in scientific inference, and, with the growing availability of computer power, are being successfully applied in an increasing number of applications in many disciplines. This volume contains selected papers presented at the Thirteenth International Workshop on Maximum Entropy and Bayesian Methods. It includes an extensive tutorial section, and a variety of contributions detailing application in the physical sciences, engineering, law, and economics. Audience: Researchers and other professionals whose work requires the application of practical statistical inference.…mehr
Andere Kunden interessierten sich auch für
- Glenn R. Heidbreder (Hrsg.)Maximum Entropy and Bayesian Methods Santa Barbara, California, U.S.A., 1993153,99 €
- G. EricksonMaximum Entropy and Bayesian Methods115,99 €
- Maximum Entropy and Bayesian Methods153,99 €
- von der LindenMaximum Entropy and Bayesian Methods Garching, Germany 1998116,99 €
- John Skilling / Sibusio Sibisi (eds.)Maximum Entropy and Bayesian Methods153,99 €
- Maximum-Entropy and Bayesian Methods in Inverse Problems115,99 €
- C.R. Smith / W.T. Grandy Jr. (Hgg.)Maximum-Entropy and Bayesian Methods in Inverse Problems115,99 €
-
-
-
Maximum entropy and Bayesian methods have fundamental, central roles in scientific inference, and, with the growing availability of computer power, are being successfully applied in an increasing number of applications in many disciplines. This volume contains selected papers presented at the Thirteenth International Workshop on Maximum Entropy and Bayesian Methods. It includes an extensive tutorial section, and a variety of contributions detailing application in the physical sciences, engineering, law, and economics.
Audience: Researchers and other professionals whose work requires the application of practical statistical inference.
Audience: Researchers and other professionals whose work requires the application of practical statistical inference.
Produktdetails
- Produktdetails
- Fundamental Theories of Physics 62
- Verlag: Springer / Springer Netherlands
- Artikelnr. des Verlages: 978-90-481-4407-5
- Softcover reprint of hardcover 1st edition 1996
- Seitenzahl: 428
- Erscheinungstermin: 5. Dezember 2010
- Englisch
- Abmessung: 235mm x 155mm x 24mm
- Gewicht: 645g
- ISBN-13: 9789048144075
- ISBN-10: 9048144078
- Artikelnr.: 32094994
- Herstellerkennzeichnung
- Springer-Verlag GmbH
- Tiergartenstr. 17
- 69121 Heidelberg
- ProductSafety@springernature.com
- Fundamental Theories of Physics 62
- Verlag: Springer / Springer Netherlands
- Artikelnr. des Verlages: 978-90-481-4407-5
- Softcover reprint of hardcover 1st edition 1996
- Seitenzahl: 428
- Erscheinungstermin: 5. Dezember 2010
- Englisch
- Abmessung: 235mm x 155mm x 24mm
- Gewicht: 645g
- ISBN-13: 9789048144075
- ISBN-10: 9048144078
- Artikelnr.: 32094994
- Herstellerkennzeichnung
- Springer-Verlag GmbH
- Tiergartenstr. 17
- 69121 Heidelberg
- ProductSafety@springernature.com
Tutorial.- An Introduction to Model Selection Using Probability Theory as Logic.- Bayesian Hyperparameters.- Hyperparameters: Optimize, or Integrate Out?.- What Bayes has to Say about the Evidence Procedure.- Reconciling Bayesian and Non-Bayesian Analysis.- Bayesian Robustness.- Bayesian Robustness: A New Look from Geometry.- Local Posterior Robustness with Parametric Priors: Maximum and Average Sensitivity.- Clustering.- Tree-Structured Clustering via the Minimum Cross Entropy Principle.- Inverse Problems.- A Scale-Invariant Bayesian Method to Solve Linear Inverse Problems.- Maximum Entropy Signal Transmission.- Quantum Probability Theory.- Maximum Quantum Entropy for Classical Density Functions.- Smoothing in Maximum Quantum Entropy.- Density Estimation by Maximum Quantum Entropy.- Philosophy.- Belief and Desire.- Computational Issues.- A Bayesian Genetic Algorithm for Calculating Maximum Entropy Distributions.- A Mathematica(TM) Package for Symbolic Bayesian Calculations.- A Multicriterion Evaluation of the Memsys5 Program for PET.- Parallel Maximum Entropy Reconstruction of PET Images.- Applications.- Bayesian Non-Linear Modeling for the Prediction Competition.- Bayesian Modeling and Classification of Neural Signals.- Estimators for the Cauchy Distribution.- Probability Theory and Multiexponential Signals: How Accurately Can the Parameters be Determined?.- Pixon-Based Image Reconstruction.- Super-Resolved Surface Reconstruction from Multiple Images.- Bayesian Analysis of Linear Phased-Array Radar.- Neural Network Image Deconvolution.- Bayesian Resolution of Closely Spaced Objects.- Ultrasonic Image Improvement through the Use of Bayesian Priors Which are Based on Adjacent Scanned Traces.- Application of Maxent to Inverse Photoemission Spectroscopy.- An EntropyEstimator Algorithm and Telecommunications Applications.- A Common Bayesian Approach to Multiuser Detection and Channel Equalization.- Thermostatics in Financial Economics.- Lessons from the New Evidence Scholarship.- How Good are a Set of Probability Predictions? The Expected Recommendation Loss (ERL) Scoring Rule.
Tutorial.- An Introduction to Model Selection Using Probability Theory as Logic.- Bayesian Hyperparameters.- Hyperparameters: Optimize, or Integrate Out?.- What Bayes has to Say about the Evidence Procedure.- Reconciling Bayesian and Non-Bayesian Analysis.- Bayesian Robustness.- Bayesian Robustness: A New Look from Geometry.- Local Posterior Robustness with Parametric Priors: Maximum and Average Sensitivity.- Clustering.- Tree-Structured Clustering via the Minimum Cross Entropy Principle.- Inverse Problems.- A Scale-Invariant Bayesian Method to Solve Linear Inverse Problems.- Maximum Entropy Signal Transmission.- Quantum Probability Theory.- Maximum Quantum Entropy for Classical Density Functions.- Smoothing in Maximum Quantum Entropy.- Density Estimation by Maximum Quantum Entropy.- Philosophy.- Belief and Desire.- Computational Issues.- A Bayesian Genetic Algorithm for Calculating Maximum Entropy Distributions.- A Mathematica(TM) Package for Symbolic Bayesian Calculations.- A Multicriterion Evaluation of the Memsys5 Program for PET.- Parallel Maximum Entropy Reconstruction of PET Images.- Applications.- Bayesian Non-Linear Modeling for the Prediction Competition.- Bayesian Modeling and Classification of Neural Signals.- Estimators for the Cauchy Distribution.- Probability Theory and Multiexponential Signals: How Accurately Can the Parameters be Determined?.- Pixon-Based Image Reconstruction.- Super-Resolved Surface Reconstruction from Multiple Images.- Bayesian Analysis of Linear Phased-Array Radar.- Neural Network Image Deconvolution.- Bayesian Resolution of Closely Spaced Objects.- Ultrasonic Image Improvement through the Use of Bayesian Priors Which are Based on Adjacent Scanned Traces.- Application of Maxent to Inverse Photoemission Spectroscopy.- An EntropyEstimator Algorithm and Telecommunications Applications.- A Common Bayesian Approach to Multiuser Detection and Channel Equalization.- Thermostatics in Financial Economics.- Lessons from the New Evidence Scholarship.- How Good are a Set of Probability Predictions? The Expected Recommendation Loss (ERL) Scoring Rule.