Jean-Pierre Aubin
Mathematical Methods of Game and Economic Theory
25,99 €
inkl. MwSt.
Versandfertig in über 4 Wochen
13 °P sammeln
Jean-Pierre Aubin
Mathematical Methods of Game and Economic Theory
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This text begins with optimization theory and convex analysis, followed by topics in game theory and mathematical economics, and concluding with an introduction to nonlinear analysis and control theory. 1982 edition.
Andere Kunden interessierten sich auch für
- Tamer BasarDynamic Noncooperative Game Theory85,99 €
- Anatol RapoportN-Person Game Theory18,99 €
- Chris WilsonGame Theory12,99 €
- Steven J BramsGame Theory and Politics18,27 €
- Game Theory28,99 €
- Leon S LasdonOptimization Theory for Large Systems23,99 €
- William R. ParksIntroduction to Gambling Theory Know the Odds11,99 €
-
-
-
This text begins with optimization theory and convex analysis, followed by topics in game theory and mathematical economics, and concluding with an introduction to nonlinear analysis and control theory. 1982 edition.
Produktdetails
- Produktdetails
- Verlag: Courier Corporation
- Revised edition
- Seitenzahl: 656
- Erscheinungstermin: 2. November 2007
- Englisch
- Abmessung: 233mm x 160mm x 31mm
- Gewicht: 812g
- ISBN-13: 9780486462653
- ISBN-10: 048646265X
- Artikelnr.: 22847926
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Courier Corporation
- Revised edition
- Seitenzahl: 656
- Erscheinungstermin: 2. November 2007
- Englisch
- Abmessung: 233mm x 160mm x 31mm
- Gewicht: 812g
- ISBN-13: 9780486462653
- ISBN-10: 048646265X
- Artikelnr.: 22847926
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Preface to the Dover Edition Preface (1982) Summary of Results Contents of
Other Possible Courses Notations I. Optimization and convex analysis 1.
Minimization problems and convexity 2. Existence, uniqueness and stability
of optimal solutions 3. Compactness and continuity properties 4.
Differentiability and subdifferentiability: characterization of optimal
solutions 5. Introduction to duality theory II. Game theory and the Walras
model of allocation of resources 6. Two-person games: an introduction 7.
Two-person zero-sum games: existence theorems 8. The fundamental economic
model: Walras equilibria 9. Non-cooperative n-person games 10. Main
solution concepts of cooperative games 11. Games with side-payments 12.
Games without side-payments III. Non-linear analysis and optimal control
theory 13. Minimax type inequalities, monotone correspondences and
gamma-convex functions 14. Introduction to calculus of variations and
optimal control 15. Fixed point theorems, quasi-variational inequalities
and correspondences Appendix A. Summary of linear functional analysis
Appendix B. The Knaster-Kuratowski-Mazurkiewicz lemma Appendix C.
Lyapunov's theorem on the range of a vector valued measure Comments
References Subject index
Other Possible Courses Notations I. Optimization and convex analysis 1.
Minimization problems and convexity 2. Existence, uniqueness and stability
of optimal solutions 3. Compactness and continuity properties 4.
Differentiability and subdifferentiability: characterization of optimal
solutions 5. Introduction to duality theory II. Game theory and the Walras
model of allocation of resources 6. Two-person games: an introduction 7.
Two-person zero-sum games: existence theorems 8. The fundamental economic
model: Walras equilibria 9. Non-cooperative n-person games 10. Main
solution concepts of cooperative games 11. Games with side-payments 12.
Games without side-payments III. Non-linear analysis and optimal control
theory 13. Minimax type inequalities, monotone correspondences and
gamma-convex functions 14. Introduction to calculus of variations and
optimal control 15. Fixed point theorems, quasi-variational inequalities
and correspondences Appendix A. Summary of linear functional analysis
Appendix B. The Knaster-Kuratowski-Mazurkiewicz lemma Appendix C.
Lyapunov's theorem on the range of a vector valued measure Comments
References Subject index
Preface to the Dover Edition Preface (1982) Summary of Results Contents of
Other Possible Courses Notations I. Optimization and convex analysis 1.
Minimization problems and convexity 2. Existence, uniqueness and stability
of optimal solutions 3. Compactness and continuity properties 4.
Differentiability and subdifferentiability: characterization of optimal
solutions 5. Introduction to duality theory II. Game theory and the Walras
model of allocation of resources 6. Two-person games: an introduction 7.
Two-person zero-sum games: existence theorems 8. The fundamental economic
model: Walras equilibria 9. Non-cooperative n-person games 10. Main
solution concepts of cooperative games 11. Games with side-payments 12.
Games without side-payments III. Non-linear analysis and optimal control
theory 13. Minimax type inequalities, monotone correspondences and
gamma-convex functions 14. Introduction to calculus of variations and
optimal control 15. Fixed point theorems, quasi-variational inequalities
and correspondences Appendix A. Summary of linear functional analysis
Appendix B. The Knaster-Kuratowski-Mazurkiewicz lemma Appendix C.
Lyapunov's theorem on the range of a vector valued measure Comments
References Subject index
Other Possible Courses Notations I. Optimization and convex analysis 1.
Minimization problems and convexity 2. Existence, uniqueness and stability
of optimal solutions 3. Compactness and continuity properties 4.
Differentiability and subdifferentiability: characterization of optimal
solutions 5. Introduction to duality theory II. Game theory and the Walras
model of allocation of resources 6. Two-person games: an introduction 7.
Two-person zero-sum games: existence theorems 8. The fundamental economic
model: Walras equilibria 9. Non-cooperative n-person games 10. Main
solution concepts of cooperative games 11. Games with side-payments 12.
Games without side-payments III. Non-linear analysis and optimal control
theory 13. Minimax type inequalities, monotone correspondences and
gamma-convex functions 14. Introduction to calculus of variations and
optimal control 15. Fixed point theorems, quasi-variational inequalities
and correspondences Appendix A. Summary of linear functional analysis
Appendix B. The Knaster-Kuratowski-Mazurkiewicz lemma Appendix C.
Lyapunov's theorem on the range of a vector valued measure Comments
References Subject index