Quinonero-CandelaEvaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers
Machine Learning Challenges
Evaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers
Herausgegeben:Quinonero-Candela, Joaquin; Dagan, Ido; Magnini, Bernardo; d'Alché-Buc, Florence
Quinonero-CandelaEvaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers
Machine Learning Challenges
Evaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers
Herausgegeben:Quinonero-Candela, Joaquin; Dagan, Ido; Magnini, Bernardo; d'Alché-Buc, Florence
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.
Andere Kunden interessierten sich auch für
- Sanjay Jain / Hans Ulrich Simon / Etsuji Tomita (eds.)Algorithmic Learning Theory39,99 €
- Ramon Lopez de Mantaras / Enric Plaza (eds.)Machine Learning: ECML 200039,99 €
- Josef Kittler / Fabio Roli (eds.)Multiple Classifier Systems39,99 €
- David Helmbold / Bob Williamson (eds.)Computational Learning Theory77,99 €
- Naoki Abe / Roni Khardon / Thomas Zeugmann (eds.)Algorithmic Learning Theory39,99 €
- Petra Perner (Volume ed.)Advances in Data Mining - Theoretical Aspects and Applications38,99 €
- RangarajanEnergy Minimization Methods in Computer Vision and Pattern Recognition77,99 €
-
-
-
This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 3944
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 11736790, 978-3-540-33427-9
- 2006
- Seitenzahl: 484
- Erscheinungstermin: 11. Mai 2006
- Englisch
- Abmessung: 235mm x 155mm x 30mm
- Gewicht: 815g
- ISBN-13: 9783540334279
- ISBN-10: 3540334270
- Artikelnr.: 20946936
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science 3944
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 11736790, 978-3-540-33427-9
- 2006
- Seitenzahl: 484
- Erscheinungstermin: 11. Mai 2006
- Englisch
- Abmessung: 235mm x 155mm x 30mm
- Gewicht: 815g
- ISBN-13: 9783540334279
- ISBN-10: 3540334270
- Artikelnr.: 20946936
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Evaluating Predictive Uncertainty Challenge.- Classification with Bayesian Neural Networks.- A Pragmatic Bayesian Approach to Predictive Uncertainty.- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees.- Estimating Predictive Variances with Kernel Ridge Regression.- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems.- Lessons Learned in the Challenge: Making Predictions and Scoring Them.- The 2005 PASCAL Visual Object Classes Challenge.- The PASCAL Recognising Textual Entailment Challenge.- Using Bleu-like Algorithms for the Automatic Recognition of Entailment.- What Syntax Can Contribute in the Entailment Task.- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment.- Textual Entailment Recognition Based on Dependency Analysis and WordNet.- Learning Textual Entailment on a Distance Feature Space.- An Inference Model for Semantic Entailment in Natural Language.- A Lexical Alignment Model for Probabilistic Textual Entailment.- Textual Entailment Recognition Using Inversion Transduction Grammars.- Evaluating Semantic Evaluations: How RTE Measures Up.- Partial Predicate Argument Structure Matching for Entailment Determination.- VENSES - A Linguistically-Based System for Semantic Evaluation.- Textual Entailment Recognition Using a Linguistically-Motivated Decision Tree Classifier.- Recognizing Textual Entailment Via Atomic Propositions.- Recognising Textual Entailment with Robust Logical Inference.- Applying COGEX to Recognize Textual Entailment.- Recognizing Textual Entailment: Is Word Similarity Enough?.
Evaluating Predictive Uncertainty Challenge.- Classification with Bayesian Neural Networks.- A Pragmatic Bayesian Approach to Predictive Uncertainty.- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees.- Estimating Predictive Variances with Kernel Ridge Regression.- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems.- Lessons Learned in the Challenge: Making Predictions and Scoring Them.- The 2005 PASCAL Visual Object Classes Challenge.- The PASCAL Recognising Textual Entailment Challenge.- Using Bleu-like Algorithms for the Automatic Recognition of Entailment.- What Syntax Can Contribute in the Entailment Task.- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment.- Textual Entailment Recognition Based on Dependency Analysis and WordNet.- Learning Textual Entailment on a Distance Feature Space.- An Inference Model for Semantic Entailment in Natural Language.- A Lexical Alignment Model for Probabilistic Textual Entailment.- Textual Entailment Recognition Using Inversion Transduction Grammars.- Evaluating Semantic Evaluations: How RTE Measures Up.- Partial Predicate Argument Structure Matching for Entailment Determination.- VENSES - A Linguistically-Based System for Semantic Evaluation.- Textual Entailment Recognition Using a Linguistically-Motivated Decision Tree Classifier.- Recognizing Textual Entailment Via Atomic Propositions.- Recognising Textual Entailment with Robust Logical Inference.- Applying COGEX to Recognize Textual Entailment.- Recognizing Textual Entailment: Is Word Similarity Enough?.