Vadim Gorin (Madison University of Wisconsin)
Lectures on Random Lozenge Tilings
Vadim Gorin (Madison University of Wisconsin)
Lectures on Random Lozenge Tilings
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
There has been a tremendous growth in understanding of random tilings over the past 25 years. This book, the first dedicated to the topic, caters to both beginning graduate students (or advanced undergraduates) wanting to learn the basics and to mature researchers looking to widen their background knowledge.
Andere Kunden interessierten sich auch für
- Adam Sheffer (City University of New Yor Bernard M. Baruch CollegePolynomial Methods and Incidence Theory63,99 €
- Laura Anderson (New York Binghamton University)Oriented Matroids65,99 €
- Alan Frieze (Pennsylvania Carnegie Mellon University)Introduction to Random Graphs83,99 €
- Daniel HuybrechtsLectures on K3 Surfaces83,99 €
- Ted Dobson (Slovenia Univerza na Primorskem)Symmetry in Graphs117,99 €
- Guillermo Pineda Villavicencio (Victoria Deakin University)Polytopes and Graphs79,99 €
- David Anderson (Ohio State University)Equivariant Cohomology in Algebraic Geometry59,99 €
-
-
-
There has been a tremendous growth in understanding of random tilings over the past 25 years. This book, the first dedicated to the topic, caters to both beginning graduate students (or advanced undergraduates) wanting to learn the basics and to mature researchers looking to widen their background knowledge.
Produktdetails
- Produktdetails
- Cambridge Studies in Advanced Mathematics
- Verlag: Cambridge University Press
- Seitenzahl: 262
- Erscheinungstermin: 3. August 2021
- Englisch
- Abmessung: 235mm x 157mm x 19mm
- Gewicht: 526g
- ISBN-13: 9781108843966
- ISBN-10: 1108843964
- Artikelnr.: 61265699
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Cambridge Studies in Advanced Mathematics
- Verlag: Cambridge University Press
- Seitenzahl: 262
- Erscheinungstermin: 3. August 2021
- Englisch
- Abmessung: 235mm x 157mm x 19mm
- Gewicht: 526g
- ISBN-13: 9781108843966
- ISBN-10: 1108843964
- Artikelnr.: 61265699
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Vadim Gorin is a faculty member at the University of Wisconsin-Madison and a member of the Institute for Information Transmission Problems at the Russian Academy of Sciences. He is a leading researcher in the area of integrable probability, and has been awarded several prizes, including the Sloan Research Fellowship and the Prize of the Moscow Mathematical Society.
Preface
1. Lecture 1: introduction and tileability
2. Lecture 2: counting tilings through determinants
3. Lecture 3: extensions of the Kasteleyn theorem
4. Lecture 4: counting tilings on a large torus
5. Lecture 5: monotonicity and concentration for tilings
6. Lecture 6: slope and free energy
7. Lecture 7: maximizers in the variational principle
8. Lecture 8: proof of the variational principle
9. Lecture 9: Euler-Lagrange and Burgers equations
10. Lecture 10: explicit formulas for limit shapes
11. Lecture 11: global Gaussian fluctuations for the heights
12. Lecture 12: heuristics for the Kenyon-Okounkov conjecture
13. Lecture 13: ergodic Gibbs translation-invariant measures
14. Lecture 14: inverse Kasteleyn matrix for trapezoids
15. Lecture 15: steepest descent method for asymptotic analysis
16. Lecture 16: bulk local limits for tilings of hexagons
17. Lecture 17: bulk local limits near straight boundaries
18. Lecture 18: edge limits of tilings of hexagons
19. Lecture 19: the Airy line ensemble and other edge limits
20. Lecture 20: GUE-corners process and its discrete analogues
21. Lecture 21: discrete log-gases
22. Lecture 22: plane partitions and Schur functions
23. Lecture 23: limit shape and fluctuations for plane partitions
24. Lecture 24: discrete Gaussian component in fluctuations
25. Lecture 25: sampling random tilings
References
Index.
1. Lecture 1: introduction and tileability
2. Lecture 2: counting tilings through determinants
3. Lecture 3: extensions of the Kasteleyn theorem
4. Lecture 4: counting tilings on a large torus
5. Lecture 5: monotonicity and concentration for tilings
6. Lecture 6: slope and free energy
7. Lecture 7: maximizers in the variational principle
8. Lecture 8: proof of the variational principle
9. Lecture 9: Euler-Lagrange and Burgers equations
10. Lecture 10: explicit formulas for limit shapes
11. Lecture 11: global Gaussian fluctuations for the heights
12. Lecture 12: heuristics for the Kenyon-Okounkov conjecture
13. Lecture 13: ergodic Gibbs translation-invariant measures
14. Lecture 14: inverse Kasteleyn matrix for trapezoids
15. Lecture 15: steepest descent method for asymptotic analysis
16. Lecture 16: bulk local limits for tilings of hexagons
17. Lecture 17: bulk local limits near straight boundaries
18. Lecture 18: edge limits of tilings of hexagons
19. Lecture 19: the Airy line ensemble and other edge limits
20. Lecture 20: GUE-corners process and its discrete analogues
21. Lecture 21: discrete log-gases
22. Lecture 22: plane partitions and Schur functions
23. Lecture 23: limit shape and fluctuations for plane partitions
24. Lecture 24: discrete Gaussian component in fluctuations
25. Lecture 25: sampling random tilings
References
Index.
Preface
1. Lecture 1: introduction and tileability
2. Lecture 2: counting tilings through determinants
3. Lecture 3: extensions of the Kasteleyn theorem
4. Lecture 4: counting tilings on a large torus
5. Lecture 5: monotonicity and concentration for tilings
6. Lecture 6: slope and free energy
7. Lecture 7: maximizers in the variational principle
8. Lecture 8: proof of the variational principle
9. Lecture 9: Euler-Lagrange and Burgers equations
10. Lecture 10: explicit formulas for limit shapes
11. Lecture 11: global Gaussian fluctuations for the heights
12. Lecture 12: heuristics for the Kenyon-Okounkov conjecture
13. Lecture 13: ergodic Gibbs translation-invariant measures
14. Lecture 14: inverse Kasteleyn matrix for trapezoids
15. Lecture 15: steepest descent method for asymptotic analysis
16. Lecture 16: bulk local limits for tilings of hexagons
17. Lecture 17: bulk local limits near straight boundaries
18. Lecture 18: edge limits of tilings of hexagons
19. Lecture 19: the Airy line ensemble and other edge limits
20. Lecture 20: GUE-corners process and its discrete analogues
21. Lecture 21: discrete log-gases
22. Lecture 22: plane partitions and Schur functions
23. Lecture 23: limit shape and fluctuations for plane partitions
24. Lecture 24: discrete Gaussian component in fluctuations
25. Lecture 25: sampling random tilings
References
Index.
1. Lecture 1: introduction and tileability
2. Lecture 2: counting tilings through determinants
3. Lecture 3: extensions of the Kasteleyn theorem
4. Lecture 4: counting tilings on a large torus
5. Lecture 5: monotonicity and concentration for tilings
6. Lecture 6: slope and free energy
7. Lecture 7: maximizers in the variational principle
8. Lecture 8: proof of the variational principle
9. Lecture 9: Euler-Lagrange and Burgers equations
10. Lecture 10: explicit formulas for limit shapes
11. Lecture 11: global Gaussian fluctuations for the heights
12. Lecture 12: heuristics for the Kenyon-Okounkov conjecture
13. Lecture 13: ergodic Gibbs translation-invariant measures
14. Lecture 14: inverse Kasteleyn matrix for trapezoids
15. Lecture 15: steepest descent method for asymptotic analysis
16. Lecture 16: bulk local limits for tilings of hexagons
17. Lecture 17: bulk local limits near straight boundaries
18. Lecture 18: edge limits of tilings of hexagons
19. Lecture 19: the Airy line ensemble and other edge limits
20. Lecture 20: GUE-corners process and its discrete analogues
21. Lecture 21: discrete log-gases
22. Lecture 22: plane partitions and Schur functions
23. Lecture 23: limit shape and fluctuations for plane partitions
24. Lecture 24: discrete Gaussian component in fluctuations
25. Lecture 25: sampling random tilings
References
Index.