Peter Mann
Lagrangian and Hamiltonian Dynamics
Peter Mann
Lagrangian and Hamiltonian Dynamics
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The book introduces classical mechanics. It does so in an informal style with numerous fresh, modern and inter-disciplinary applications assuming no prior knowledge of the necessary mathematics. The book provides a comprehensive and self-contained treatment of the subject matter up to the forefront of research in multiple areas.
Andere Kunden interessierten sich auch für
- Claude GignouxSolved Problems In Lagrangian And Hamiltonian Mechanics75,99 €
- Vladimir PletserLagrangian and Hamiltonian Analytical Mechanics: Forty Exercises Resolved and Explained119,99 €
- José Rachid MohallemLagrangian and Hamiltonian Mechanics56,99 €
- Alain J BrizardAn Introduction to Lagrangian Mechanics91,99 €
- New Trends in Fluid and Solid Models - Proceedings of the International Conference in Honour of Brian Straughan121,99 €
- Anh Le VanLagrangian Mechanics177,99 €
- P. OrlandiFluid Flow Phenomena145,99 €
-
-
-
The book introduces classical mechanics. It does so in an informal style with numerous fresh, modern and inter-disciplinary applications assuming no prior knowledge of the necessary mathematics. The book provides a comprehensive and self-contained treatment of the subject matter up to the forefront of research in multiple areas.
Produktdetails
- Produktdetails
- Verlag: Oxford University Press
- Seitenzahl: 560
- Erscheinungstermin: 24. Juli 2018
- Englisch
- Abmessung: 255mm x 197mm x 35mm
- Gewicht: 1361g
- ISBN-13: 9780198822370
- ISBN-10: 0198822375
- Artikelnr.: 50848915
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Oxford University Press
- Seitenzahl: 560
- Erscheinungstermin: 24. Juli 2018
- Englisch
- Abmessung: 255mm x 197mm x 35mm
- Gewicht: 1361g
- ISBN-13: 9780198822370
- ISBN-10: 0198822375
- Artikelnr.: 50848915
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Peter Mann completed his undergraduate degree in Chemistry at the University of St Andrews. He is now a PhD student at the University of St Andrews investigating spreading phenomena on complex networks and how antibiotic resistance proliferates on different network topologies.
Part I: Newtonian Mechanics
1: Introduction
2: Newton's Three Laws
3: Energy and Work
4: Introductory Rotational Dynamics
5: The Harmonic Oscillator
6: Wave Mechanics and Elements of Mathematical Physics
Part II: Langrangian Mechanics
7: Introduction
8: Coordinates and Constraints
9: The Stationary Action Principle
10: Constrained Langrangian Mechanics
11: Point Transformations in Langrangian Mechanics
12: The Jacobi Energy Function
13: Symmetries and Langrangian-Hamiltonian-Jacobi Theory
14: Near-Equilibrium Oscillations
15: Virtual Work and d'Alembert's Principle
Part III: Canonical Mechanics
16: Introduction
17: The Hamiltonian and Phase Space
18: Hamiltonian's equations and Routhian Reduction
19: Poisson Brackets and Angular momentum
20: Canonical and Gauge Transformations
21: Hamilton-Jacobi Theory
22: Liouville's Theorem and Classical Statistical Mechanics
23: Constrained Hamiltonian Dynamics
24: Autonomous Geometrical Mehcanics
25: The Structure of Phase Space
26: Near-Integrable Systems
Part IV: Classical Field Theory
27: Introduction
28: Langrangian Field Theory
29: Hamiltonian Field Theory
30: Clssical Electromagnetism
31: Neother's Theorem for Fields
32: Classical Path-Integrals
Part V: Preliminary Mathematics
33: The (Not so?) Basics
34: Matrices
35: Partial Differentiation
36: Legendre Transformations
37: Vector Calculus
38: Differential equations
39: Calculus of Variations
Part VI: Advanced Mathematics
40: Linear Algebra
41: Differential Geometry
Part VII: Exam Style Questions
Appendix A: Noether's Theorem Explored
Appendix B: The Action Principle Explored
Appendix C: Useful Relations
Appendxi D: Poisson and Nambu Brackets Explored
Appendix: Canonical Transformations Explored
Appendix F: Action-Angle Variables Explored
Appendix G: Statistical Mechanics Explored
Appendix H: Biographies
1: Introduction
2: Newton's Three Laws
3: Energy and Work
4: Introductory Rotational Dynamics
5: The Harmonic Oscillator
6: Wave Mechanics and Elements of Mathematical Physics
Part II: Langrangian Mechanics
7: Introduction
8: Coordinates and Constraints
9: The Stationary Action Principle
10: Constrained Langrangian Mechanics
11: Point Transformations in Langrangian Mechanics
12: The Jacobi Energy Function
13: Symmetries and Langrangian-Hamiltonian-Jacobi Theory
14: Near-Equilibrium Oscillations
15: Virtual Work and d'Alembert's Principle
Part III: Canonical Mechanics
16: Introduction
17: The Hamiltonian and Phase Space
18: Hamiltonian's equations and Routhian Reduction
19: Poisson Brackets and Angular momentum
20: Canonical and Gauge Transformations
21: Hamilton-Jacobi Theory
22: Liouville's Theorem and Classical Statistical Mechanics
23: Constrained Hamiltonian Dynamics
24: Autonomous Geometrical Mehcanics
25: The Structure of Phase Space
26: Near-Integrable Systems
Part IV: Classical Field Theory
27: Introduction
28: Langrangian Field Theory
29: Hamiltonian Field Theory
30: Clssical Electromagnetism
31: Neother's Theorem for Fields
32: Classical Path-Integrals
Part V: Preliminary Mathematics
33: The (Not so?) Basics
34: Matrices
35: Partial Differentiation
36: Legendre Transformations
37: Vector Calculus
38: Differential equations
39: Calculus of Variations
Part VI: Advanced Mathematics
40: Linear Algebra
41: Differential Geometry
Part VII: Exam Style Questions
Appendix A: Noether's Theorem Explored
Appendix B: The Action Principle Explored
Appendix C: Useful Relations
Appendxi D: Poisson and Nambu Brackets Explored
Appendix: Canonical Transformations Explored
Appendix F: Action-Angle Variables Explored
Appendix G: Statistical Mechanics Explored
Appendix H: Biographies
Part I: Newtonian Mechanics
1: Introduction
2: Newton's Three Laws
3: Energy and Work
4: Introductory Rotational Dynamics
5: The Harmonic Oscillator
6: Wave Mechanics and Elements of Mathematical Physics
Part II: Langrangian Mechanics
7: Introduction
8: Coordinates and Constraints
9: The Stationary Action Principle
10: Constrained Langrangian Mechanics
11: Point Transformations in Langrangian Mechanics
12: The Jacobi Energy Function
13: Symmetries and Langrangian-Hamiltonian-Jacobi Theory
14: Near-Equilibrium Oscillations
15: Virtual Work and d'Alembert's Principle
Part III: Canonical Mechanics
16: Introduction
17: The Hamiltonian and Phase Space
18: Hamiltonian's equations and Routhian Reduction
19: Poisson Brackets and Angular momentum
20: Canonical and Gauge Transformations
21: Hamilton-Jacobi Theory
22: Liouville's Theorem and Classical Statistical Mechanics
23: Constrained Hamiltonian Dynamics
24: Autonomous Geometrical Mehcanics
25: The Structure of Phase Space
26: Near-Integrable Systems
Part IV: Classical Field Theory
27: Introduction
28: Langrangian Field Theory
29: Hamiltonian Field Theory
30: Clssical Electromagnetism
31: Neother's Theorem for Fields
32: Classical Path-Integrals
Part V: Preliminary Mathematics
33: The (Not so?) Basics
34: Matrices
35: Partial Differentiation
36: Legendre Transformations
37: Vector Calculus
38: Differential equations
39: Calculus of Variations
Part VI: Advanced Mathematics
40: Linear Algebra
41: Differential Geometry
Part VII: Exam Style Questions
Appendix A: Noether's Theorem Explored
Appendix B: The Action Principle Explored
Appendix C: Useful Relations
Appendxi D: Poisson and Nambu Brackets Explored
Appendix: Canonical Transformations Explored
Appendix F: Action-Angle Variables Explored
Appendix G: Statistical Mechanics Explored
Appendix H: Biographies
1: Introduction
2: Newton's Three Laws
3: Energy and Work
4: Introductory Rotational Dynamics
5: The Harmonic Oscillator
6: Wave Mechanics and Elements of Mathematical Physics
Part II: Langrangian Mechanics
7: Introduction
8: Coordinates and Constraints
9: The Stationary Action Principle
10: Constrained Langrangian Mechanics
11: Point Transformations in Langrangian Mechanics
12: The Jacobi Energy Function
13: Symmetries and Langrangian-Hamiltonian-Jacobi Theory
14: Near-Equilibrium Oscillations
15: Virtual Work and d'Alembert's Principle
Part III: Canonical Mechanics
16: Introduction
17: The Hamiltonian and Phase Space
18: Hamiltonian's equations and Routhian Reduction
19: Poisson Brackets and Angular momentum
20: Canonical and Gauge Transformations
21: Hamilton-Jacobi Theory
22: Liouville's Theorem and Classical Statistical Mechanics
23: Constrained Hamiltonian Dynamics
24: Autonomous Geometrical Mehcanics
25: The Structure of Phase Space
26: Near-Integrable Systems
Part IV: Classical Field Theory
27: Introduction
28: Langrangian Field Theory
29: Hamiltonian Field Theory
30: Clssical Electromagnetism
31: Neother's Theorem for Fields
32: Classical Path-Integrals
Part V: Preliminary Mathematics
33: The (Not so?) Basics
34: Matrices
35: Partial Differentiation
36: Legendre Transformations
37: Vector Calculus
38: Differential equations
39: Calculus of Variations
Part VI: Advanced Mathematics
40: Linear Algebra
41: Differential Geometry
Part VII: Exam Style Questions
Appendix A: Noether's Theorem Explored
Appendix B: The Action Principle Explored
Appendix C: Useful Relations
Appendxi D: Poisson and Nambu Brackets Explored
Appendix: Canonical Transformations Explored
Appendix F: Action-Angle Variables Explored
Appendix G: Statistical Mechanics Explored
Appendix H: Biographies