H. O. Fattorini, Hector O. Fattorini, Fattorini Hector O.
Infinite Dimensional Optimization and Control Theory
H. O. Fattorini, Hector O. Fattorini, Fattorini Hector O.
Infinite Dimensional Optimization and Control Theory
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.
Andere Kunden interessierten sich auch für
- Horst OsswaldMalliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion68,99 €
- Evarist GinéMathematical Foundations of Infinite-Dimensional Statistical Models87,99 €
- Wolfgang WoessRandom Walks on Infinite Graphs and Groups152,99 €
- Gideon WeissScheduling and Control of Queueing Networks102,99 €
- Thomas A. SeveriniElements of Distribution Theory107,99 €
- Ruth H. KeoghCase-Control Studies59,99 €
- Martin PetersonAn Introduction to Decision Theory81,99 €
-
-
-
Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 816
- Erscheinungstermin: 30. September 2009
- Englisch
- Abmessung: 240mm x 161mm x 48mm
- Gewicht: 1374g
- ISBN-13: 9780521451253
- ISBN-10: 0521451256
- Artikelnr.: 24351122
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 816
- Erscheinungstermin: 30. September 2009
- Englisch
- Abmessung: 240mm x 161mm x 48mm
- Gewicht: 1374g
- ISBN-13: 9780521451253
- ISBN-10: 0521451256
- Artikelnr.: 24351122
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Hector O. Fattorini graduated from the Licenciado en Matemática, Universidad de Buenos Aires in 1960 and gained a Ph.D. in Mathematics from the Courant Institute of Mathematical Sciences, New York University, in 1965. Since 1967, he has been a member of the Department of Mathematics at the University of California, Los Angeles.
Part I. Finite Dimensional Control Problems: 1. Calculus of variations and
control theory; 2. Optimal control problems without target conditions; 3.
Abstract minimization problems: the minimum principle for the time optimal
problem; 4. Abstract minimization problems: the minimum principle for
general optimal control problems; Part II. Infinite Dimensional Control
Problems: 5. Differential equations in Banach spaces and semigroup theory;
6. Abstract minimization problems in Hilbert spaces: applications to
hyperbolic control systems; 7. Abstract minimization problems in Banach
spaces: abstract parabolic linear and semilinear equations; 8.
Interpolation and domains of fractional powers; 9. Linear control systems;
10. Optimal control problems with state constraints; 11. Optimal control
problems with state constraints: The abstract parabolic case; Part III.
Relaxed Controls: 12. Spaces of relaxed controls: topology and measure
theory; 13. Relaxed controls in finite dimensional systems: existence
theory; 14. Relaxed controls in infinite dimensional spaces: existence
theory.
control theory; 2. Optimal control problems without target conditions; 3.
Abstract minimization problems: the minimum principle for the time optimal
problem; 4. Abstract minimization problems: the minimum principle for
general optimal control problems; Part II. Infinite Dimensional Control
Problems: 5. Differential equations in Banach spaces and semigroup theory;
6. Abstract minimization problems in Hilbert spaces: applications to
hyperbolic control systems; 7. Abstract minimization problems in Banach
spaces: abstract parabolic linear and semilinear equations; 8.
Interpolation and domains of fractional powers; 9. Linear control systems;
10. Optimal control problems with state constraints; 11. Optimal control
problems with state constraints: The abstract parabolic case; Part III.
Relaxed Controls: 12. Spaces of relaxed controls: topology and measure
theory; 13. Relaxed controls in finite dimensional systems: existence
theory; 14. Relaxed controls in infinite dimensional spaces: existence
theory.
Part I. Finite Dimensional Control Problems: 1. Calculus of variations and
control theory; 2. Optimal control problems without target conditions; 3.
Abstract minimization problems: the minimum principle for the time optimal
problem; 4. Abstract minimization problems: the minimum principle for
general optimal control problems; Part II. Infinite Dimensional Control
Problems: 5. Differential equations in Banach spaces and semigroup theory;
6. Abstract minimization problems in Hilbert spaces: applications to
hyperbolic control systems; 7. Abstract minimization problems in Banach
spaces: abstract parabolic linear and semilinear equations; 8.
Interpolation and domains of fractional powers; 9. Linear control systems;
10. Optimal control problems with state constraints; 11. Optimal control
problems with state constraints: The abstract parabolic case; Part III.
Relaxed Controls: 12. Spaces of relaxed controls: topology and measure
theory; 13. Relaxed controls in finite dimensional systems: existence
theory; 14. Relaxed controls in infinite dimensional spaces: existence
theory.
control theory; 2. Optimal control problems without target conditions; 3.
Abstract minimization problems: the minimum principle for the time optimal
problem; 4. Abstract minimization problems: the minimum principle for
general optimal control problems; Part II. Infinite Dimensional Control
Problems: 5. Differential equations in Banach spaces and semigroup theory;
6. Abstract minimization problems in Hilbert spaces: applications to
hyperbolic control systems; 7. Abstract minimization problems in Banach
spaces: abstract parabolic linear and semilinear equations; 8.
Interpolation and domains of fractional powers; 9. Linear control systems;
10. Optimal control problems with state constraints; 11. Optimal control
problems with state constraints: The abstract parabolic case; Part III.
Relaxed Controls: 12. Spaces of relaxed controls: topology and measure
theory; 13. Relaxed controls in finite dimensional systems: existence
theory; 14. Relaxed controls in infinite dimensional spaces: existence
theory.