James C. Robinson
Infinite-Dimensional Dynamical Systems
An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors
James C. Robinson
Infinite-Dimensional Dynamical Systems
An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book treats the theory of global attractors, a recent development in the theory of partial differential equations.
Andere Kunden interessierten sich auch für
- Alexandre CarvalhoAttractors for infinite-dimensional non-autonomous dynamical systems75,99 €
- Infinite Dimensional Dynamical Systems75,99 €
- Mykola PerestyukAttractors of infinite-dimensional impulsive dynamical systems36,99 €
- Roger TemamInfinite-Dimensional Dynamical Systems in Mechanics and Physics68,99 €
- P. R. ChernoffProperties of Infinite Dimensional Hamiltonian Systems20,99 €
- Afra J. ZomorodianTopology for Computing126,99 €
- Jun KigamiAnalysis on Fractals69,99 €
-
-
-
This book treats the theory of global attractors, a recent development in the theory of partial differential equations.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 480
- Erscheinungstermin: 30. Juni 2010
- Englisch
- Abmessung: 229mm x 152mm x 28mm
- Gewicht: 773g
- ISBN-13: 9780521635646
- ISBN-10: 0521635640
- Artikelnr.: 21188815
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 480
- Erscheinungstermin: 30. Juni 2010
- Englisch
- Abmessung: 229mm x 152mm x 28mm
- Gewicht: 773g
- ISBN-13: 9780521635646
- ISBN-10: 0521635640
- Artikelnr.: 21188815
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Part I. Functional Analysis: 1. Banach and Hilbert spaces
2. Ordinary differential equations
3. Linear operators
4. Dual spaces
5. Sobolev spaces
Part II. Existence and Uniqueness Theory: 6. The Laplacian
7. Weak solutions of linear parabolic equations
8. Nonlinear reaction-diffusion equations
9. The Navier-Stokes equations existence and uniqueness
Part II. Finite-Dimensional Global Attractors: 10. The global attractor existence and general properties
11. The global attractor for reaction-diffusion equations
12. The global attractor for the Navier-Stokes equations
13. Finite-dimensional attractors: theory and examples
Part III. Finite-Dimensional Dynamics: 14. Finite-dimensional dynamics I, the squeezing property: determining modes
15. Finite-dimensional dynamics II, The stong squeezing property: inertial manifolds
16. Finite-dimensional dynamics III, a direct approach
17. The Kuramoto-Sivashinsky equation
Appendix A. Sobolev spaces of periodic functions
Appendix B. Bounding the fractal dimension using the decay of volume elements.
2. Ordinary differential equations
3. Linear operators
4. Dual spaces
5. Sobolev spaces
Part II. Existence and Uniqueness Theory: 6. The Laplacian
7. Weak solutions of linear parabolic equations
8. Nonlinear reaction-diffusion equations
9. The Navier-Stokes equations existence and uniqueness
Part II. Finite-Dimensional Global Attractors: 10. The global attractor existence and general properties
11. The global attractor for reaction-diffusion equations
12. The global attractor for the Navier-Stokes equations
13. Finite-dimensional attractors: theory and examples
Part III. Finite-Dimensional Dynamics: 14. Finite-dimensional dynamics I, the squeezing property: determining modes
15. Finite-dimensional dynamics II, The stong squeezing property: inertial manifolds
16. Finite-dimensional dynamics III, a direct approach
17. The Kuramoto-Sivashinsky equation
Appendix A. Sobolev spaces of periodic functions
Appendix B. Bounding the fractal dimension using the decay of volume elements.
Part I. Functional Analysis: 1. Banach and Hilbert spaces
2. Ordinary differential equations
3. Linear operators
4. Dual spaces
5. Sobolev spaces
Part II. Existence and Uniqueness Theory: 6. The Laplacian
7. Weak solutions of linear parabolic equations
8. Nonlinear reaction-diffusion equations
9. The Navier-Stokes equations existence and uniqueness
Part II. Finite-Dimensional Global Attractors: 10. The global attractor existence and general properties
11. The global attractor for reaction-diffusion equations
12. The global attractor for the Navier-Stokes equations
13. Finite-dimensional attractors: theory and examples
Part III. Finite-Dimensional Dynamics: 14. Finite-dimensional dynamics I, the squeezing property: determining modes
15. Finite-dimensional dynamics II, The stong squeezing property: inertial manifolds
16. Finite-dimensional dynamics III, a direct approach
17. The Kuramoto-Sivashinsky equation
Appendix A. Sobolev spaces of periodic functions
Appendix B. Bounding the fractal dimension using the decay of volume elements.
2. Ordinary differential equations
3. Linear operators
4. Dual spaces
5. Sobolev spaces
Part II. Existence and Uniqueness Theory: 6. The Laplacian
7. Weak solutions of linear parabolic equations
8. Nonlinear reaction-diffusion equations
9. The Navier-Stokes equations existence and uniqueness
Part II. Finite-Dimensional Global Attractors: 10. The global attractor existence and general properties
11. The global attractor for reaction-diffusion equations
12. The global attractor for the Navier-Stokes equations
13. Finite-dimensional attractors: theory and examples
Part III. Finite-Dimensional Dynamics: 14. Finite-dimensional dynamics I, the squeezing property: determining modes
15. Finite-dimensional dynamics II, The stong squeezing property: inertial manifolds
16. Finite-dimensional dynamics III, a direct approach
17. The Kuramoto-Sivashinsky equation
Appendix A. Sobolev spaces of periodic functions
Appendix B. Bounding the fractal dimension using the decay of volume elements.