Grundstrukturen der Analysis II
W. Gähler
Broschiertes Buch

Grundstrukturen der Analysis II

Versandkostenfrei!
Versandfertig in 1-2 Wochen
49,99 €
inkl. MwSt.
Weitere Ausgaben:
PAYBACK Punkte
0 °P sammeln!
Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg ...