MicletThird International Colloquium, ICGI-96, Montpellier, France, September 25 - 27, 1996. Proceedings
Grammatical Inference: Learning Syntax from Sentences
Third International Colloquium, ICGI-96, Montpellier, France, September 25 - 27, 1996. Proceedings
Mitarbeit:Miclet, Laurent; Higuera, Colin de la
MicletThird International Colloquium, ICGI-96, Montpellier, France, September 25 - 27, 1996. Proceedings
Grammatical Inference: Learning Syntax from Sentences
Third International Colloquium, ICGI-96, Montpellier, France, September 25 - 27, 1996. Proceedings
Mitarbeit:Miclet, Laurent; Higuera, Colin de la
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the refereed proceedings of the Third International Colloquium on Grammatical Inference, ICGI-96, held in Montpellier, France, in September 1996. The 25 revised full papers contained in the book together with two invited key papers by Magerman and Knuutila were carefully selected for presentation at the conference. The papers are organized in sections on algebraic methods and algorithms, natural language and pattern recognition, inference and stochastic models, incremental methods and inductive logic programming, and operational issues.
Andere Kunden interessierten sich auch für
- CarrascoGrammatical Inference and Applications39,99 €
- Georgios Paliouras / Yasubumi Sakakibara (eds.)Grammatical Inference: Algorithms and Applications39,99 €
- HonavarGrammatical Inference39,99 €
- José Luis Vicedo / Particio Martínez-Barco / Rafael Munoz / Maximiliano Saiz Noeda (eds.)Advances in Natural Language Processing77,99 €
- Electronic Dictionaries and Automata in Computational Linguistics39,99 €
- Melpomeni AlexaTools für Social Listening und Sentiment-Analyse49,99 €
- Melanie SiegelSentiment-Analyse deutschsprachiger Meinungsäußerungen32,99 €
-
-
-
This book constitutes the refereed proceedings of the Third International Colloquium on Grammatical Inference, ICGI-96, held in Montpellier, France, in September 1996.
The 25 revised full papers contained in the book together with two invited key papers by Magerman and Knuutila were carefully selected for presentation at the conference. The papers are organized in sections on algebraic methods and algorithms, natural language and pattern recognition, inference and stochastic models, incremental methods and inductive logic programming, and operational issues.
The 25 revised full papers contained in the book together with two invited key papers by Magerman and Knuutila were carefully selected for presentation at the conference. The papers are organized in sections on algebraic methods and algorithms, natural language and pattern recognition, inference and stochastic models, incremental methods and inductive logic programming, and operational issues.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 1147
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-61778-5
- 1996.
- Seitenzahl: 344
- Erscheinungstermin: 16. September 1996
- Englisch
- Abmessung: 235mm x 155mm x 19mm
- Gewicht: 446g
- ISBN-13: 9783540617785
- ISBN-10: 3540617787
- Artikelnr.: 09252280
- Herstellerkennzeichnung
- Springer-Verlag GmbH
- Tiergartenstr. 17
- 69121 Heidelberg
- ProductSafety@springernature.com
- Lecture Notes in Computer Science 1147
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-61778-5
- 1996.
- Seitenzahl: 344
- Erscheinungstermin: 16. September 1996
- Englisch
- Abmessung: 235mm x 155mm x 19mm
- Gewicht: 446g
- ISBN-13: 9783540617785
- ISBN-10: 3540617787
- Artikelnr.: 09252280
- Herstellerkennzeichnung
- Springer-Verlag GmbH
- Tiergartenstr. 17
- 69121 Heidelberg
- ProductSafety@springernature.com
Learning grammatical structure using statistical decision-trees.- Inductive inference from positive data: from heuristic to characterizing methods.- Unions of identifiable families of languages.- Characteristic sets for polynomial grammatical inference.- Query learning of subsequential transducers.- Lexical categorization: Fitting template grammars by incremental MDL optimization.- Selection criteria for word trigger pairs in language modeling.- Clustering of sequences using a minimum grammar complexity criterion.- A note on grammatical inference of slender context-free languages.- Learning linear grammars from structural information.- Learning of context-sensitive language acceptors through regular inference and constraint induction.- Inducing constraint grammars.- Introducing statistical dependencies and structural constraints in variable-length sequence models.- A disagreement count scheme for inference of constrained Markov networks.- Using knowledge to improve N-Gram language modelling through the MGGI methodology.- Discrete sequence prediction with commented Markov models.- Learning k-piecewise testable languages from positive data.- Learning code regular and code linear languages.- Incremental regular inference.- An incremental interactive algorithm for regular grammar inference.- Inductive logic programming for discrete event systems.- Stochastic simple recurrent neural networks.- Inferring stochastic regular grammars with recurrent neural networks.- Maximum mutual information and conditional maximum likelihood estimations of stochastic regular syntax-directed translation schemes.- Grammatical inference using Tabu Search.- Using domain information during the learning of a subsequential transducer.- Identification of DFA: Data-dependent versus data-independent algorithms.
Learning grammatical structure using statistical decision-trees.- Inductive inference from positive data: from heuristic to characterizing methods.- Unions of identifiable families of languages.- Characteristic sets for polynomial grammatical inference.- Query learning of subsequential transducers.- Lexical categorization: Fitting template grammars by incremental MDL optimization.- Selection criteria for word trigger pairs in language modeling.- Clustering of sequences using a minimum grammar complexity criterion.- A note on grammatical inference of slender context-free languages.- Learning linear grammars from structural information.- Learning of context-sensitive language acceptors through regular inference and constraint induction.- Inducing constraint grammars.- Introducing statistical dependencies and structural constraints in variable-length sequence models.- A disagreement count scheme for inference of constrained Markov networks.- Using knowledge to improve N-Gram language modelling through the MGGI methodology.- Discrete sequence prediction with commented Markov models.- Learning k-piecewise testable languages from positive data.- Learning code regular and code linear languages.- Incremental regular inference.- An incremental interactive algorithm for regular grammar inference.- Inductive logic programming for discrete event systems.- Stochastic simple recurrent neural networks.- Inferring stochastic regular grammars with recurrent neural networks.- Maximum mutual information and conditional maximum likelihood estimations of stochastic regular syntax-directed translation schemes.- Grammatical inference using Tabu Search.- Using domain information during the learning of a subsequential transducer.- Identification of DFA: Data-dependent versus data-independent algorithms.