Fixed point property under renormings in non-reflexive Banach spaces

Fixed point property under renormings in non-reflexive Banach spaces

Some techniques and examples

Versandkostenfrei!
Versandfertig in 6-10 Tagen
32,99 €
inkl. MwSt.
PAYBACK Punkte
16 °P sammeln!
Consider a subset C of a Banach space (X, · ). Let T be a mapping from a set C to itself, it is said that a point x in C is a fixed point for T if Tx=x. This mapping is a nonexpansive mapping if Tx - Ty x - y for all x and y belonging to C. It is said that a Banach space X has the fixed point property (FPP) if every nonexpansive mapping defined from a closed convex bounded subset into itself has a fixed point. For a long time, it was conjectured that all Banach spaces with the FPP had to be reflexive. In 2008, it was given an unexpected answer to this conjecture: it was found the first known ...